Skip to main content

A data granulation model for searching knowledge about diagnosed objects

  • Conference paper
  • First Online:
Trends in Advanced Intelligent Control, Optimization and Automation (KKA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 577))

Included in the following conference series:

  • 3141 Accesses

Abstract

Diagnostic knowledge about chosen technical classes of objects can be effective gained by analyzing Internet webpages. In this paper for analyzing these data is proposed the data granulation method. Information granules are mathematical models describing data aggregates. Data aggregates are connected with each other and described by the Fuzzy Description Logic. It is presented that this data granulation model can be used to sharpen the diagnostic knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic. Handbook Theory, Implementation and Application. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  • 2. Baumeister J.: Agile Development of Diagnostic Knowledge Systems. infix, Akademische Verlagsgesellschaft Aka GmbH, Berlin (2004)

    Google Scholar 

  • 3. Belard N., Pencol’e Y., Combacau M.: A theory of meta-diagnosis: Reasoning about diagnostic systems. In Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI11), pp. 731–737, (2011)

    Google Scholar 

  • 4. Bloch I.: Mathematical Morphology. In: Handbook of Spatial Logics, M. Aiello, I.Pratt-Hartmann and J. van Benthem (eds.), pp. 857–944, Springer (2007)

    Google Scholar 

  • 5. Bobillo, F., Straccia, U.: fuzzyDL: An expressive fuzzy description logic reasoner.In: Proc. IEEE Int. Conference on Fuzzy Systems FUZZ-IEEE 2008 (IEEEWorld Congress on Computational Intelligence), pp. 923–930, (2008)

    Google Scholar 

  • 6. Bryniarska, A.: The Paradox of the Fuzzy Disambiguation in the Information Retrieval. (IJARAI) International Journal of Advanced Research in Artificial Intelligence, pp. 55–58, Volume 2 No 9, (2013)

    Google Scholar 

  • 7. Bryniarska, A.: The Model of PossibleWeb Data Retrieval. Proceedings of 2nd IEEE International Conference on Cybernetics CYBCONF 2015, pp. 348–353, (2015)

    Google Scholar 

  • 8. Bryniarska, A.: An Uncertain Diagnostic System of the Constructional and Technological Preferences. Proc. Of The 21st International Conference on Methods and Models in Automation and Robotics MMAR 2016, pp. 256–260, (2016)

    Google Scholar 

  • 9. Fanizzi, N., d’Amato, C., Esposito, F., Lukasiewicz, T.: Representing uncertain concepts in rough description logics via contextual indiscernibility relations. In: Bobillo, F., da Costa, P.C.G., d’Amato, C., et al. (eds.) Proc. 4th Int. Workshop on Uncertainty Reasoning for the Semantic Web, (2008)

    Google Scholar 

  • 10. Kosko B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Prentice Hall, Englewood Cliffs, N.J. (1992)

    Google Scholar 

  • 11. Pedrycz, W.: Allocation of information granularity in optimization and decision-making models: towards building the foundations of Granular Computing, pp. 137–145, (2014)

    Google Scholar 

  • 12. Pedrycz, W.: Granular computing: analysis and design of intelligent systems. Taylor & Francis Group, Abingdon (2013)

    Google Scholar 

  • 13. Simou, N., Mailis, T., Stoilos, G., Stamou, S.: Optimization techniques for fuzzy description logics. In: Description Logics. Proc. 23rd Int.Workshop on Description Logics (DL 2010). CEUR-WS, vol. 573, (2010)

    Google Scholar 

  • 14. Serra J.: Image Analysis and Mathematical Morphology. Academic Press (1982)

    Google Scholar 

  • 15. Skowron A., Swiniarski R., Synak P.: Approximation Spaces and Information Granulation. In: J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets III, LNCS 3400, pp. 175–189, Springer-Verlag Berlin Heidelberg (2005)

    Google Scholar 

  • 16. Yao, Y.Y. : The art of granular computing. In: Proceeding of the International Conference on Rough Sets and Emerging Intelligent Systems Paradigms LNAI 4585, pp. 101–112, (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Bryniarska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bryniarska, A. (2017). A data granulation model for searching knowledge about diagnosed objects. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-60699-6_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60699-6_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60698-9

  • Online ISBN: 978-3-319-60699-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics