Skip to main content

An example of adaptive fuzzy control design with the use of frequency-domain methods

  • Conference paper
  • First Online:
Trends in Advanced Intelligent Control, Optimization and Automation (KKA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 577))

Included in the following conference series:

Abstract

This paper presents an example of adaptive fuzzy control design for an unstable plant with a pole changing location in the right half-plane. The design procedure utilizes the Nyquist and the circle stability criteria that can be graphically tested using Nyquist plots. It is assumed that the function of the fuzzy controller is a nonlinearity described by a sector condition. An adaptation mechanism ensures that during adaptation this function stays in a safe sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. Chen, C.L.P., Ren, C.E., Du, T.: Fuzzy observed-based adaptive consensus tracking control for second-order multiagent systems with heterogeneous nonlinear dynamics. IEEE Transactions on Fuzzy Systems 24(4), 906–915 (2016)

    Google Scholar 

  • 2. Er, M.J., Mandal, S.: A survey of adaptive fuzzy controllers: Nonlinearities and classifications. IEEE Transactions on Fuzzy Systems 24(5), 1095–1107 (2016)

    Google Scholar 

  • 3. Franklin, G., Powell, J., Emami-Naeini, A.: Feedback control of dynamic systems. Pearson (2010)

    Google Scholar 

  • 4. Gao, Y., Tong, S., Li, Y.: Observer-based adaptive fuzzy output constrained control for MIMO nonlinear systems with unknown control directions. Fuzzy Sets and Systems 290, 79–99 (2016)

    Google Scholar 

  • 5. Hwang, C.L., Fang, W.L.: Global fuzzy adaptive hierarchical path tracking control of a mobile robot with experimental validation. IEEE Transactions on Fuzzy Systems 24(3), 724–740 (2016)

    Google Scholar 

  • 6. Lai, G., Liu, Z., Zhang, Y., Chen, C.L.P.: Adaptive fuzzy tracking control of non- linear systems with asymmetric actuator backlash based on a new smooth inverse. IEEE Transactions on Cybernetics 46(6), 1250–1262 (2016)

    Google Scholar 

  • 7. Li, P., Li, P., Sui, Y.: Adaptive fuzzy hysteresis internal model tracking control of piezoelectric actuators with nanoscale application. IEEE Transactions on Fuzzy Systems 24(5), 1246–1254 (2016)

    Google Scholar 

  • 8. Li, Y., Tong, S., Li, T.: Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation. IEEE Transactions on Fuzzy Systems 24(4), 841–853 (2016)

    Google Scholar 

  • 9. Li, Y.X., Yang, G.H.: Fuzzy adaptive output feedback fault-tolerant tracking control of a class of uncertain nonlinear systems with nonaffine nonlinear faults. IEEE Transactions on Fuzzy Systems 24(1), 223–234 (2016)

    Google Scholar 

  • 10. Liu, Y.J., Tong, S., Li, D.J., Gao, Y.: Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint. IEEE Transactions on Fuzzy Systems 24(5), 1147–1158 (2016)

    Google Scholar 

  • 11. Liu, Z., Wang, F., Zhang, Y., Chen, C.L.P.: Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems. IEEE Transactions on Cybernetics 46(2), 524–534 (2016)

    Google Scholar 

  • 12. Long, L., Zhao, J.: Adaptive fuzzy output-feedback dynamic surface control of MIMO switched nonlinear systems with unknown gain signs. Fuzzy Sets and Systems 302, 27–51 (2016)

    Google Scholar 

  • 13. Ren, C.E., Chen, L., Chen, C.L.P.: Adaptive fuzzy leader-following consensus control for stochastic multiagent systems with heterogeneous nonlinear dynamics. IEEE Transactions on Fuzzy Systems 25(1), 181–190 (2017)

    Google Scholar 

  • 14. Rigatos, G., Zhu, G., Yousef, H., Boulkroune, A.: Flatness-based adaptive fuzzy control of electrostatically actuated MEMS using output feedback. Fuzzy Sets and Systems 290, 138–157 (2016)

    Google Scholar 

  • 15. Sui, S., Tong, S.: Fuzzy adaptive quantized output feedback tracking control for switched nonlinear systems with input quantization. Fuzzy Sets and Systems 290, 56–78 (2016)

    Google Scholar 

  • 16. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics (1), 116–132 (1985)

    Google Scholar 

  • 17. Tong, S., Li, Y., Sui, S.: Adaptive fuzzy output feedback control for switched nonstrict-feedback nonlinear systems with input nonlinearities. IEEE Transactions on Fuzzy Systems 24(6), 1426–1440 (2016)

    Google Scholar 

  • 18. Vidyasagar, M.: Nonlinear Systems Analysis. Prentice-Hall Networks Series. Prentice-Hall (1978)

    Google Scholar 

  • 19. Wang, H., Liu, X., Liu, K.: Adaptive fuzzy tracking control for a class of pure- feedback stochastic nonlinear systems with non-lower triangular structure. Fuzzy Sets and Systems 302, 101–120 (2016)

    Google Scholar 

  • 20. Wang, N., Er, M.J., Sun, J.C., Liu, Y.C.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE Transactions on Cybernetics 46(7), 1511–1523 (2016)

    Google Scholar 

  • 21. Wang, T., Qiu, J., Yin, S., Gao, H., Fan, J., Chai, T.: Performance-based adaptive fuzzy tracking control for networked industrial processes. IEEE Transactions on Cybernetics 46(8), 1760–1770 (2016)

    Google Scholar 

  • 22. Wiktorowicz, K.: Design of state feedback adaptive fuzzy controllers for second order-systems using a frequency stability criterion. IEEE Transactions on Fuzzy Systems (2016). DOI 10.1109/TFUZZ.2016.2566671

  • 23. Wiktorowicz, K.: Output feedback direct adaptive fuzzy controller based on frequency-domain methods. IEEE Transactions on Fuzzy Systems 24(3), 622–634 (2016)

    Google Scholar 

  • 24. Wu, L.B., Yang, G.H.: Adaptive fuzzy tracking control for a class of uncertain nonaffine nonlinear systems with dead-zone inputs. Fuzzy Sets and Systems 290, 1–21 (2016)

    Google Scholar 

  • 25. Wu, T.S., Karkoub, M., Yu, W.S., Chen, C.T., Her, M.G., Wu, K.W.: Anti-sway tracking control of tower cranes with delayed uncertainty using a robust adaptive fuzzy control. Fuzzy Sets and Systems 290, 118–137 (2016)

    Google Scholar 

  • 26. Yin, S., Shi, P., Yang, H.: Adaptive fuzzy control of strict-feedback nonlinear time- delay systems with unmodeled dynamics. IEEE Transactions on Cybernetics 46(8), 1926–1938 (2016)

    Google Scholar 

  • 27. Yue, M., An, C., Du, Y., Sun, J.: Indirect adaptive fuzzy control for a nonholonomic/underactuated wheeled inverted pendulum vehicle based on a data-driven trajectory planner. Fuzzy Sets and Systems 290, 158–177 (2016)

    Google Scholar 

  • 28. Zhai, D., An, L., Li, J., Zhang, Q.: Adaptive fuzzy fault-tolerant control with guaranteed tracking performance for nonlinear strict-feedback systems. Fuzzy Sets and Systems 302, 82–100 (2016)

    Google Scholar 

  • 29. Zhai, D.H., Xia, Y.: Adaptive fuzzy control of multilateral asymmetric teleopera- tion for coordinated multiple mobile manipulators. IEEE Transactions on Fuzzy Systems 24(1), 57–70 (2016)

    Google Scholar 

  • 30. Zhang, L., Li, Y., Tong, S.: Adaptive fuzzy output feedback control for MIMO switched nonlinear systems with prescribed performances. Fuzzy Sets and Systems 306, 153–168 (2017)

    Google Scholar 

  • 31. Zhang, Y., Tao, G., Chen, M., Wen, L.: Parameterization and adaptive control of multivariable noncanonical T-S fuzzy systems. IEEE Transactions on Fuzzy Systems 25(1), 156–171 (2017)

    Google Scholar 

  • 32. Zhao, X., Shi, P., Zheng, X.: Fuzzy adaptive control design and discretization for a class of nonlinear uncertain systems. IEEE Transactions on Cybernetics 46(6), 1476–1483 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Wiktorowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wiktorowicz, K. (2017). An example of adaptive fuzzy control design with the use of frequency-domain methods. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-60699-6_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60699-6_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60698-9

  • Online ISBN: 978-3-319-60699-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics