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Abstract. The huge amount of genomic and transcriptomic data obtained to
characterize human diversity can also be exploited to indirectly gather informa-
tion on the human microbiome. Here we present the pipeline QmihR designed to
identify and quantify the abundance of known microbiome communities and to
search for new/rare pathogenic species in RNA-seq datasets. We applied QmihR
to 36 RNA-seq tumor tissue samples from Ukrainian gastric carcinoma patients
available in TCGA, in order to characterize their microbiome and check for effi-
ciency of the pipeline. The microbes present in the samples were in accordance
to published data in other European datasets, and the independent BLAST eval-
uation of microbiome-aligned reads confirmed that the assigned species presented
the highest BLAST match-hits. QmihR is available at GitHub (https://github.com/
Pereira-lab/QmihR).
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1 Introduction

A mutualist symbiotic relationship between microbes and their animal hosts has been
estimated to occur for at least the last 500 million years [1]. A big impulse on our
knowledge on the ‘normal’ human microbiome is being contributed by large scale
studies such as the Human Microbiome Project (HMP) [2] and MetaHIT [3]. Major
findings of HMP [4] indicated an overall high diversity of community members, heter-
ogeneous in terms of within host versus between host ratio diversities, and ethnicity was
amongst one of the strongest associations with microbiome. An intact microbial
community is essential for a healthy development of the host [5], and several changes
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to the microbiome are beginning to be described as associated with complex diseases,
such as cancer [6, 7].

Initially, most studies of microbial communities depended on the sequencing of the
gene coding the bacterial and archaea 16s rRNA, but the paradigm shift in sequencing
technologies is also changing this analyses. Efforts have been applied to complete
sequence the microbiome directly [8], and the huge amount of human-focused omics
data (for e.g., international consortia such The Cancer Genome Atlas (TCGA) [9] and
Genotype-Tissue Expression project (GTEx) [10]) has the potential to indirectly
contribute information on the human microbiome [11]. In fact, it has been already shown
[11] that human whole genome/exome (WGS/WES) and transcriptome sequences
(RNA-seq) contain human-unmapped reads that match bacteria, viruses and fungi that
colonize/infect the individuals. However, a technical challenge is that a large number
of short reads cannot be uniquely mapped to a specific location at one genome, mapping
instead to multiple locations at one or related genomes, influencing the bacterial abun-
dance classification. This issue must be taken into account in the development of efficient
pipelines, which can incorporate probabilistic methods that attribute these reads to the
most abundant species already identified through unique-location mapping reads (such
as RSEM [12]).

In this paper, we describe a pipeline to characterize the microbiome inferred from
human-focused RNA-seq data, designed to perform a reliable classification of bacterial
abundance. We assess its efficiency through a real TCGA RNA-seq dataset collected in
36 Ukrainian patients from gastric carcinoma. This dataset was selected as it can be
compared with published information of the gut microbiome in European individuals,
inferred from traditional techniques of 16s rRNA sequencing [13].

2 Description of the Pipeline

We designed a pipeline (Fig. 1) aiming to best characterize known microbiome commun-
ities, despite also allowing to collect reads that can be processed in BLAST for identi-
fication of new/uncommon pathogenic species. Currently, the most common micro-
biome species occurring in various human habitats are well characterize, rendering more
efficient to design pipelines that search first for a reference panel of microbial species,
and allow identification of the subset of unmapped non-human reads. HMP is a good
departing database to construct these reference panels per location in the human body.

QmihR begins by trimming of reads using Trimmomatic [14]. It checks if: (1) the
mean of two consecutive bases is below 20 Phred; and (2) the resulting read is smaller
than 40 bases. This pre-processing step removes adapters and low quality reads,
following the best practices for accurate RNA-seq expression estimates [15]. Even when
using the pipeline in already indexed non-human mapped reads, we advise to perform
this trimming as in our experience there are still low-quality reads classified as
unmapped.

Then the global alignment of the reads against the bacterial reference database is
made with Bowtie2 [16] and quantification of bacterial genera is performed through
RSEM [17]. This tool takes a probabilistic approach to the quantification of reads in
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Fig. 1. Scheme of the QmihR pipeline.

cases of multi-mapping, and avoids discarding all reads that would multi-map in diverse
species, conducting to a more real solution. A previous publication [18] has shown that
RSEM presents the higher accuracy amongst probabilistic algorithms, guiding our
choice. RSEM produces as output counts of mapped reads per gene belonging to a
species (giving an indication of the most expressed genes). The pipeline takes the counts
of the various genes within a species and aggregates them to produce counts of reads
aligned per species, which are then normalized by the library size for the mapped reads
against the bacterial reference database, as indicated in the Eq. (1).

counts gene 3

lized, s =
normalizedcounts S all reads mapped 1o database (1)

3 Application to a TCGA RNA-seq Dataset

The original human-unmapped raw RNA-seq reads obtained in tumor tissue from 36
Ukrainians patients of gastric carcinomas were found in the TCGA Genomic Data
Commons repository (https://gdc.cancer.gov/). The microbe reference panel used
contains 194 bacterial whole genomes (one representative strain per species) collected
from NCBI following the species identified by the HMP [2] in the gastrointestinal tract.
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QmihR reported that the microbiome in the cohort (Fig. 2) is dominated by the genera
Bacillus and Pseudomonas (around 21% and 17%, respectively), then Escherichia and
Enterobacter (10-15%). The class I carcinogen Helicobacter reaches 3% overall
frequency in Ukraine. This microbiome diversity is in accordance to published data in
other European cohorts [3].
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Fig. 2. Overall microbiome abundance in gastric tumor samples from Ukraine (n = 36). Only
genera that passed a threshold of 1% of mean abundance are displayed in the graph, otherwise
they are summed together in a class denominated as “other”.
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Fig. 3. Comparison of hit-species/genera matches between QmihR and BLAST for all microbe-
aligned reads in the 36 gastric tumor samples from Ukraine.
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In order to double-check the assignment of microbe species, we run the total amount
of QmihR-assigned reads in BLAST (database downloaded on 3th February 2017, and
curated for excluding sequences from uncultured species). In the Ukrainian dataset
(Fig. 3), in around 82% of the reads the species identified in QmihR would also be on
the list of top hits provided by BLAST, and the value raises to 88% when limiting to the
genus level. We also took a closer look into the two samples with poorer results, and
confirmed in BLAST that some read-pairs would align with an identity of 97-100% in
the forward and 93-100% identity in the reverse in the QmihR-assigned species.

4 Benchmarking

QmihR took in average 30 min per sample to calculate the microbiome abundance, based
on the reference microbe panel provided (mean 14 Gb of raw un-mapped reads in fastq
format), when using an Intel Core 17-4700 2.4 GHz with 8 cores and 16 Gb of RAM. It
is a fast and efficient tool that may be used in human microbiome inference from RNA-
seq, in health and disease conditions.

To run the full set of unmapped reads in BLAST tool would take weeks. Even the
test of running the QmihR-mapped reads in bacteria took between 2 and 8 h per sample

5 Conclusions

QmihR is a fast and efficient tool that may be used in human microbiome inference from
RNA-seq, both in health and disease conditions. To our best knowledge, this is the first
pipeline for quantification of the microbiome (bacterial) from RNA-seq data. A similar
pipeline was developed to infer viral infection in RNA-seq TCGA samples [19], a case-
study that presents, nevertheless, some differences to the situation analyzed here. Viral
genomes are smaller than bacterial ones and the genes detected in the RN A-seq are the
ones important for the infection and display low homology between species. In the
bacteria, the reads detected in RNA-seq are mostly from rRNA genes (higher than 90%;
similarly to the human genes), which display certain similarity between species, gener-
ating the multi-location read problem.
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