Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 616))

  • 840 Accesses

Abstract

This paper presents a first approximation to the simulation of vascular smooth muscle cell following an agent-based simulation approach. This simulation incorporates mathematical models that describe the behaviour of these cells, which are used by the agents in order to emulate vascular contraction. A first tool, implemented in Netlogo, is provided to allow the performance of the proposed simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://ccl.northwestern.edu/netlogo/.

References

  1. Behrendt, D., Ganz, P.: Endothelial function: from vascular biology to clinical applications. Am. J. Cardiol. 90(10, Supplement 3), L40–L48 (2002)

    Article  Google Scholar 

  2. Lüscher, T.F., Richard, V., Tschudi, M., Yang, Z., Boulanger, C.: Endothelial control of vascular tone in large and small coronary arteries. J. Am. Coll. Cardiol. 15(3), 519–527 (1990)

    Article  Google Scholar 

  3. Galley, H.F., Webster, N.R.: Physiology of the endothelium. BJA: Br. J. Anaesth. 93(1), 105 (2004)

    Article  Google Scholar 

  4. Lacolley, P., Regnault, V., Nicoletti, A., Li, Z., Michel, J.-B.: The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc. Res. 95(2), 194–204 (2012)

    Article  Google Scholar 

  5. Majesky, M.W., Dong, X.R., Hoglund, V., Mahoney, W.M., Daum, G.: The adventitia. Arterioscler. Thromb. Vasc. Biol. 31(7), 1530–1539 (2011)

    Article  Google Scholar 

  6. Thorne, B.C., Hayenga, H.N., Humphrey, J.D., Peirce, S.M.: Toward a multi-scale computational model of arterial adaptation in hypertension: verification of a multi-cell agent-based model. Front. Physiol. 2, 1–12 (2011)

    Article  Google Scholar 

  7. Wang, Z., Butner, J.D., Kerketta, R., Cristini, V., Deisboeck, T.S.: Simulating cancer growth with multiscale agent-based modeling. Semin. Cancer Biol. 30, 70–78 (2015). Elsevier

    Article  Google Scholar 

  8. Dada, J.O., Mendes, P.: Multi-scale modelling and simulation in systems biology. Integr. Biol. 3(2), 86–96 (2011)

    Article  Google Scholar 

  9. Qu, Z., Garfinkel, A., Weiss, J.N., Nivala, M.: Multi-scale modeling in biology: how to bridge the gaps between scales? Prog. Biophys. Mol. Biol. 107(1), 21–31 (2011)

    Article  Google Scholar 

  10. Wessel, M.D., Jurs, P.C., Tolan, J.W., Muskal, S.M.: Prediction of human intestinal absorption of drug compounds from molecular structure. J. Chem. Inf. Comput. Sci. 38(4), 726–735 (1998)

    Article  Google Scholar 

  11. Stenberg, P., Luthman, K., Artursson, P.: Virtual screening of intestinal drug permeability. J. Control. Release 65(1), 231–243 (2000)

    Article  Google Scholar 

  12. Gao, H., Lajiness, M.S., Van Drie, J.: Enhancement of binary QSAR analysis by a GA-based variable selection method. J. Mol. Graph. Model. 20(4), 259–268 (2002)

    Article  Google Scholar 

  13. Eyer, C.L.: Goodman & gilman’s: the pharmacological basis of therapeutics. Am. J. Pharm. Educ. 66(1), 95 (2002)

    Google Scholar 

  14. Shen, M., LeTiran, A., Xiao, Y., Golbraikh, A., Kohn, H., Tropsha, A.: Quantitative structure-activity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbor and simulated annealing PLS methods. J. Med. Chem. 45(13), 2811–2823 (2002)

    Article  Google Scholar 

  15. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A & A meta-model for multi-agent systems. Auton. Agents Multi-Agent Syst. 17(3), 432–456 (2008)

    Article  Google Scholar 

  16. Murtada, S.I., Kroon, M., Holzapfel, G.A.: A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech. Model. Mechanobiol. 9(6), 749–762 (2010)

    Article  Google Scholar 

  17. Yang, Jin, Clark, John W., Bryan, Robert M., Robertson, Claudia S.: The myogenic response in isolated rat cerebrovascular arteries: vessel model. Med. Eng. Phys. 25(8), 711–717 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. A. Rincon , Guerra-Ojeda Sol , V. Julian or C. Carrascosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rincon, J.A., Sol, GO., Julian, V., Carrascosa, C. (2017). Vascular Contraction Model Based on Multi-agent Systems. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., Pinto, T. (eds) 11th International Conference on Practical Applications of Computational Biology & Bioinformatics. PACBB 2017. Advances in Intelligent Systems and Computing, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-60816-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60816-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60815-0

  • Online ISBN: 978-3-319-60816-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics