Skip to main content

Automated Collection and Sharing of Adaptive Amino Acid Changes Data

  • Conference paper
  • First Online:
11th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2017)

Abstract

When changes at few amino acid sites are the target of selection, adaptive amino acid changes in protein sequences can be identified using maximum-likelihood methods based on models of codon substitution (such as codeml). Such methods have been used numerous times using a variety of different organisms but the time needed to collect the data and prepare the input files means that tens or a couple of hundred coding regions are usually analyzed. Nevertheless, the recent availability of flexible and ease to use computer applications to collect the relevant data (such as BDBM), and infer positively selected amino acid sites (such as ADOPS) means that the whole process is easier and quicker than before, but the lack of a batch option in ADOPS, here reported, still precluded the analysis of hundreds or thousands of sequence files. Given the interest and possibility of running such large scale projects, we also developed a database where ADOPS projects can be stored. Therefore, here we also present B+ that is both a data repository and a convenient interface to look at the information contained in ADOPS projects without the need to download and unzip the corresponding ADOPS project file. The ADOPS projects available at B+ can also be downloaded, unzipped, and opened using the ADOPS graphical interface. The availability of such a database ensures results repeatability, promotes data reuse with significant savings on the time needed for preparing datasets, and allows further exploration of the data contained in ADOPS projects effortlessly.

N. Vázquez, C.P. Vieira and B.S.R. Amorim—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, Z.H., Nielsen, R.: Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J. Mol. Evol. 46(4), 409–418 (1998)

    Article  Google Scholar 

  2. Yang, Z.H.: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13(5), 555–556 (1997)

    Google Scholar 

  3. Yang, Z.H.: PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24(8), 1586–1591 (2007)

    Article  Google Scholar 

  4. Li, M., Huang, L., Li, K.Q., Huo, Y.X., Chen, C.H., Wang, J.K., Liu, J.W., Luo, Z.W., Chen, C.S., Dong, Q., et al.: Adaptive evolution of interleukin-3 (IL3), a gene associated with brain volume variation in general human populations. Hum. Genet. 135(4), 377–392 (2016)

    Article  Google Scholar 

  5. Muto, Y., Guindon, S., Umemura, T., Kohidai, L., Ueda, H.: Adaptive evolution of formyl peptide receptors in mammals. J. Mol. Evol. 80(2), 130–141 (2015)

    Article  Google Scholar 

  6. Zhang, S., Gao, B., Zhu, S.: Target-driven evolution of scorpion toxins. Sci. Rep. 5 (2015). Article No: 14973, doi:10.1038/srep14973

  7. Finseth, F.R., Dong, Y.Z., Saunders, A., Fishman, L.: Duplication and adaptive evolution of a key centromeric protein in Mimulus, a genus with female meiotic drive. Mol. Biol. Evol. 32(10), 2694–2706 (2015)

    Article  Google Scholar 

  8. Zhang, Y., Yu, Z.N.: The first evidence of positive selection in peptidoglycan recognition protein (PGRP) genes of Crassostrea gigas. Fish Shellfish Immun. 34(5), 1352–1355 (2013)

    Article  Google Scholar 

  9. Jiggins, F.M., Kim, K.W.: A screen for immunity genes evolving under positive selection in Drosophila. J. Evol. Biol. 20(3), 965–970 (2007)

    Article  Google Scholar 

  10. Morales-Hojas, R., Vieira, C.P., Reis, M., Vieira, J.: Comparative analysis of five immunity-related genes reveals different levels of adaptive evolution in the virilis and melanogaster groups of Drosophila. Heredity 102(6), 573–578 (2009)

    Article  Google Scholar 

  11. Twiddy, S.S., Woelk, C.H., Holmes, E.C.: Phylogenetic evidence for adaptive evolution of dengue viruses in nature. J. Gen. Virol. 83, 1679–1689 (2002)

    Article  Google Scholar 

  12. Woelk, C.H., Holmes, E.C.: Variable immune-driven natural selection in the attachment (G) glycoprotein of respiratory syncytial virus (RSV). J. Mol. Evol. 52(2), 182–192 (2001)

    Article  Google Scholar 

  13. Woelk, C.H., Jin, L., Holmes, E.C., Brown, D.W.G.: Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus. J. Gen. Virol. 82, 2463–2474 (2001)

    Article  Google Scholar 

  14. Shen, J., Kirk, B.D., Ma, J.P., Wang, Q.H.: Diversifying selective pressure on influenza B virus Hemagglutinin. J. Med. Virol. 81(1), 114–124 (2009)

    Article  Google Scholar 

  15. Yang, W., Bielawski, J.P., Yang, Z.H.: Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J. Mol. Evol. 57(2), 212–221 (2003)

    Article  Google Scholar 

  16. Gu, M., Liu, W.J., Xu, L.J., Cao, Y.Z., Yao, C.F., Hu, S.L., Liu, X.F.: Positive selection in the hemagglutinin-neuraminidase gene of Newcastle disease virus and its effect on vaccine efficacy. Virol. J. 8, 150 (2011)

    Article  Google Scholar 

  17. Emes, R.D., Yang, Z.H.: Duplicated paralogous genes subject to positive selection in the genome of Trypanosoma brucei. Plos One 3(5), e2295 (2008)

    Article  Google Scholar 

  18. Lu, J., Zheng, J.Z., Xu, Q.G., Chen, K.P., Zhang, C.Y.: Adaptive evolution of the vertebrate skeletal muscle sodium channel. Genet. Mol. Biol. 34(2), 323–328 (2011)

    Article  Google Scholar 

  19. Khan, M.M.G., Ryden, A.M., Chowdhury, M.S., Hasan, M.A., Kazi, J.U.: Maximum likelihood analysis of mammalian p53 indicates the presence of positively selected sites and higher tumorigenic mutations in purifying sites. Gene 483(1–2), 29–35 (2011)

    Article  Google Scholar 

  20. Sobrinho, I.S., de Brito, R.A.: Evidence for positive selection in the gene fruitless in Anastrepha fruit flies. BMC Evol. Biol. 10, 293 (2010)

    Article  Google Scholar 

  21. Metzger, K.J., Thomas, M.A.: Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins. BMC Evol. Biol. 10, 139 (2010)

    Article  Google Scholar 

  22. Vieira, C.P., Charlesworth, D., Vieira, J.: Evidence for rare recombination at the gametophytic self-incompatibility locus. Heredity 91(3), 262–267 (2003)

    Article  Google Scholar 

  23. Nunes, M.D.S., Santos, R.A.M., Ferreira, S.M., Vieira, J., Vieira, C.P.: Variability patterns and positively selected sites at the gametophytic self-incompatibility pollen SFB gene in a wild self-incompatible Prunus spinosa (Rosaceae) population. New Phytol. 172(3), 577–587 (2006)

    Article  Google Scholar 

  24. Vieira, J., Morales-Hojas, R., Santos, R.A.M., Vieira, C.P.: Different positively selected sites at the gametophytic self-incompatibility pistil S-RNase gene in the Solanaceae and Rosaceae (Prunus, Pyrus, and Malus). J. Mol. Evol. 65(2), 175–185 (2007)

    Article  Google Scholar 

  25. Vieira, J., Santos, R.A.M., Ferreira, S.M., Vieira, C.P.: Inferences on the number and frequency of S-pollen gene (SFB) specificities in the polyploid Prunus spinosa. Heredity 101(4), 351–358 (2008)

    Article  Google Scholar 

  26. Anisimovam, M.: Darwin and Fisher meet at biotech: on the potential of computational molecular evolution in industry. BMC Evol. Biol. 15, 76 (2015)

    Article  Google Scholar 

  27. Reboiro-Jato, D., Reboiro-Jato, M., Fdez-Riverola, F., Fonseca, N.A., Vieira, J.: On the development of a pipeline for the automatic detection of positively selected sites. Adv. Intel. Soft Comput. 154, 225−+ (2012)

    Article  Google Scholar 

  28. Nickel, G.C., Tefft, D., Adams, M.D.: Human PAML browser: a database of positive selection on human genes using phylogenetic methods. Nucleic Acids Res. 36, D800–D808 (2008)

    Article  Google Scholar 

  29. Creevey, C.J., McInerney, J.O.: Clann: investigating phylogenetic information through supertree analyses. Bioinformatics 21(3), 390–392 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This article is a result of the project Norte-01-0145-FEDER-000008 - Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). This work has been also funded by the “Platform of integration of intelligent techniques for analysis of biomedical information” project (TIN2013-47153-C3-3-R) from Spanish Ministry of Economy and Competitiveness. SING group thanks CITI (Centro de Investigación, Transferencia e Innovación) from University of Vigo for hosting its IT infrastructure. H. López-Fernández is supported by a post-doctoral fellowship from Xunta de Galicia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vázquez, N. et al. (2017). Automated Collection and Sharing of Adaptive Amino Acid Changes Data. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., Pinto, T. (eds) 11th International Conference on Practical Applications of Computational Biology & Bioinformatics. PACBB 2017. Advances in Intelligent Systems and Computing, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-60816-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60816-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60815-0

  • Online ISBN: 978-3-319-60816-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics