Skip to main content

Abstract

NGS (next-generation sequencing) is bringing the need to efficiently handle large volumes of patient data, maintaining privacy laws, such as those with secure protocols that ensure patients DNA confidentiality. Although there are multiple file representations for genomic data, the FASTA format is perhaps the most used and popular. As far as we know, FASTA encryption is being addressed with general purpose encryption methods, without exploring a compact representation. In this paper, we propose Cryfa, a new fast encryption method to store securely FASTA files in a compact form. The main differences between a general encryption approach and Cryfa are the reduction of storage, up to approximately three times, without compromising security, and the possibility of integration with pipelines. The core of the encryption method uses a symmetric approach, the AES (Advanced Encryption Standard). Cryfa implementation is freely available, under license GPLv3, at https://github.com/pratas/cryfa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mardis, E.R.: The impact of next-generation sequencing technology on genetics. Trends Genet. 24(3), 133–141 (2008)

    Article  Google Scholar 

  2. Schlosberg, A.: Data security in genomics: a review of australian privacy requirements and their relation to cryptography in data storage. J. Pathol. Inform. 7, 6 (2016)

    Article  Google Scholar 

  3. Mohammed, M.H., Dutta, A., Bose, T., Chadaram, S., Mande, S.S.: DELIMINATE - a fast and efficient method for loss-less compression of genomic sequences. Bioinformatics 28(19), 2527–2529 (2012)

    Article  Google Scholar 

  4. Bose, T., Mohammed, M.H., Dutta, A., Mande, S.S.: BIND-an algorithm for loss-less compression of nucleotide sequence data. J. Biosci. 37(4), 785–789 (2012)

    Article  Google Scholar 

  5. Pinho, A.J., Pratas, D.: MFCompress: a compression tool for fasta and multi-fasta data. Bioinformatics 30, 117–118 (2013)

    Article  Google Scholar 

  6. Benoit, G., Lemaitre, C., Lavenier, D., Drezen, E., Dayris, T., Uricaru, R., Rizk, G.: Reference-free compression of high throughput sequencing data with a probabilistic de bruijn graph. BMC Bioinformatics 16(1), 288 (2015)

    Article  Google Scholar 

  7. Kim, M., Zhang, X., Ligo, J.G., Farnoud, F., Veeravalli, V.V., Milenkovic, O.: MetaCRAM: an integrated pipeline for metagenomic taxonomy identification and compression. BMC Bioinformatics 17(1), 94 (2016)

    Article  Google Scholar 

  8. Cao, M.D., Dix, T.I., Allison, L., Mears, C.: A simple statistical algorithm for biological sequence compression. In: Proceedings of the Data Compression Conference, DCC-2007, Snowbird, Utah, pp. 43–52, March 2007

    Google Scholar 

  9. Pratas, D., Pinho, A.J., Ferreira, P.: Efficient compression of genomic sequences. In: Proceedings of the Data Compression Conference, DCC-2016, Snowbird, Utah, pp. 231–240, March 2016

    Google Scholar 

  10. Hosseini, M., Pratas, D., Pinho, A.J.: A survey on data compression methods for biological sequences. Information 7(4), 56 (2016)

    Article  Google Scholar 

  11. Daemen, J., Rijmen, V.: AES proposal: Rijndael. EC (1999)

    Google Scholar 

  12. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8_14

    Chapter  Google Scholar 

  13. Ashokkumar, C., Giri, R.P., Menezes, B.: Highly efficient algorithms for AES key retrieval in cache access attacks. In: IEEE European Symposium on Security and Privacy (EuroS&P), 261–275. IEEE (2016)

    Google Scholar 

  14. Gullasch, D., Bangerter, E., Krenn, S.: Cache games-bringing access-based cache attacks on AES to practice. In: IEEE Symposium on Security and Privacy, pp. 490–505. IEEE (2011)

    Google Scholar 

  15. Keerthi, V.K., et al.: Taxonomy of SSL/TLS attacks. Int. J. Comput. Netw. Inf. Secur. 8(2), 15 (2016)

    Google Scholar 

  16. Meyer, C., Schwenk, J.: Lessons learned from previous SSL/TLS attacks-a brief chronology of attacks and weaknesses. IACR Cryptology ePrint Archive 2013, 49 (2013)

    Google Scholar 

  17. Church, D., Deanna, M., Schneider, V., et al.: Modernizing reference genome assemblies. PLoS Biol. 9(7), e1001091 (2011)

    Article  Google Scholar 

  18. Bouillaguet, C., Derbez, P., Dunkelman, O., Fouque, P.A., Keller, N., Rijmen, V.: Low-data complexity attacks on aes. IEEE Trans. Inf. Theory 58(11), 7002–7017 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially funded by FEDER (Programa Operacional Factores de Competitividade - COMPETE) and by National Funds through the FCT - Foundation for Science and Technology, in the context of the projects UID/CEC/00127/2013, PTCD/EEI-SII/6608/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Pratas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pratas, D., Hosseini, M., Pinho, A.J. (2017). Cryfa: A Tool to Compact and Encrypt FASTA Files. In: Fdez-Riverola, F., Mohamad, M., Rocha, M., De Paz, J., Pinto, T. (eds) 11th International Conference on Practical Applications of Computational Biology & Bioinformatics. PACBB 2017. Advances in Intelligent Systems and Computing, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-60816-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60816-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60815-0

  • Online ISBN: 978-3-319-60816-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics