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Abstract. The present paper aims to analyze and explore the ROC632
package, specifying its main characteristics and functions. More specifi-
cally, the goal of this study is the evaluation of the effectiveness of the
package and its strengths and weaknesses. This package was created in
order to overcome the lack of information concerning incomplete time-to-
event data, adapting the 0.632+4 bootstrap estimator for the evaluation
of time dependent ROC curves. By applying this package to a specific
dataset (DLBCLpatients), it becomes possible to assess tangible data,
determining if it is able to analyze complete and incomplete data effi-
ciently and without bias.
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1 Introduction

The ROC632 package is a R package currently available in version 0.6. It was
created by Yohann Foucher and it was first published in December 27th of 2013
[5] on CRAN repository.

This package was created in order to overcome the lack of information con-
cerning incomplete time-to-event data (in this case, patient death [5]), adapt-
ing the 0.6324 bootstrap estimator for the evaluation of time dependent ROC
curves, where the results do not depend on the incidence of the event [6].

This package allows estimation of prognostic capacity of microarray data and
it relies on four main functions: ROC, AUC, boot. ROC' and boot. ROCt [5,6].

The information listed above was adapted from [5] and [6] and further details
about the features in which this package is based can be found in sections 1.1,
1.2 and 1.3.

1.1 ROC Curves

A ROC curve is a plot used to evaluate the relationship between sensitivity and
one minus specificity (false positive rate (FPR)) [2,4,9].

Thus, sensitivity, or true positive rate, is the proportion of true positives (TP),
i.e., the correctly classified positives divided by the true positives plus those who
should be classified as such (FN) [2-4,9,10]. In medical terms, sensitivity can also
be perceived as the ability to identify diseased patients from a given sample [2].

Similarly, specificity, or true negative rate, is the proportion of correctly clas-
sified negatives (true negatives - TN) from all the expected negatives [2—4,9,10],
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which can also be interpreted as the capacity to disregard all healthy individuals
from a given sample [2]. Specificity can be formulated as TN/(T N + FP), from
which we can obtain the false positive rate: FPR = 1 — speci ficity.

Accuracy, which is a key parameter for any test, [2—4,13] is the number of
correctly classified objects out of all the given objects [13], i.e., the proportion of
true positives and true negatives (correctly classified elements) in a sample [2—4],
which implies that test accuracy is measured by sensitivity and specificity [2].

1.2 Area Under the ROC Curve

The most common and most important index able to attain the essential features
of a ROC curve is the Area Under the ROC Curve (AUC) [4,9,10], which reduces
it to a single scalar value [3,10]. The AUC can be computed by the trapezoidal
method [3,9,10].

The value of the AUC ranges from 0 to 1, because it belongs to the unit
square [3,4]. The ideal value for the AUC is 1 [2], meaning that every positive
scored higher that every negative [4]; inversely, an AUC of 0 means that every
negative scored higher than every positive and that the test has no accuracy [2,4]
and thus should be discarded. Despite starting at 0, one should only consider
AUC values ranging from 0.5 to 1, because the diagonal line (see section 1.1)
has an area of 0.5 [3].

Accuracy can also be estimated through the AUC: a test with an AUC value
below 0.5 has no accuracy, between 0.5 and 0.7 has low accuracy, ranging from
0.7 to 0.9 has moderate accuracy and above 0.9 has high accuracy, emphasizing
that ”the greater the AUC, the better the test” [2,3].

1.3 The Bootstrap Method

Finding a method for validating predictive models and obtaining an unbiased
performance has been a target of discussion by multiple authors [11,16]. Although
there are several approaches to estimate the error rate of a prediction rule,
such as the jackknife (leave-one-out) method and cross-validation, the bootstrap
method has been considered the most efficient throughout the years, as it is
capable of directly assessing the variability, returns higher accuracy and it is
able to calculate the variance of a point estimate of prediction error [1,14,15].

The bootstrap method separates the available data into two sets: the train-
ing set, which is used to obtain a predictive model and the test set, used to
evaluate its performance [4,5,8,16]. It draws random instances with replacement
(resampling) from the original dataset, which means that some sets can be used
multiple times and some might not be used at all, although, typically, eventually
all the data will be selected at least once [10,14,15].

The 0.632 bootstrap estimator, or 0.632 bootstrap resampling variable, evalu-
ates independent data, estimated on a per-subject basis [1,14].

However, since this method can still be biased, another estimator, the 0.632+
estimator, was created to improve it [1,14,15].
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2 Materials and Methods

This paper focused mainly on the exploration of the ROC632 package, using the
DLBCL dataset, created by Rosenwald et al. [12]. The DLBCLpatients dataset
and the DLBCLgenes matrix concern, respectively, 240 patients affected by a
diffuse large b-cell lymphoma (DLBCL) treated with anthracycline based ther-
apy and their clinical information, based on the scientific discoveries made by
Rosenwald [12].

The assessment of the boot. ROC function, which builds a model relying on
logistic regression with lasso penalty and deals only with complete data, con-
sisted on varying parameters, that is, assigning different values to its arguments,
namely the lasso penalty (lambdal — tuning parameter) and/or the number of
bootstrap iterations (N.boot) and, in the cases where lambda was NULL, the fold
for cross-validation (fold.cv). Then, the significance of the difference between the
apparent, cross-validation, 0.632 and 0.632+ bootstrap curves for each condition
was estimated. The study of the boot. ROCt function, which is capable of dealing
with censored data and draws a model by applying the Cox model with lasso
penalty, included the process listed for the first function and the modification of
the prognostic limit for which the variable is evaluated (pro.time argument).

Both functions return a vector (Coef) with the regression coefficients ob-
tained in the logistic or Cox model with lasso penalty (boot. ROC and boot. ROCH,
respectively). These coefficients were used to determine the significant features
for each result (those whose coefficient is nonzero), which could be related to the
emergence of this type of lymphoma.

Since the ROC632 package does not calculate the standard error of the AUC,
three functions were added to enable comparison between them. The first func-
tion calculates the standard error of a given curve, the second function deter-
mines the z score of two compared curves and the third function estimates the
p value of the difference between the curves.

"st_error" = function (A) {

Q1 A/ (2 - 1)

Q2 (2 x A ~2) / (1 + A)

sqrt ((A*(1-4) + (ndead-1) * (Q1-A"2) + (nalive-1) * (Q2-A"2))/(ndead*nalive))

5 }

"z" = function(Al, A2, sel, se2) (A1-A2)/sqrt(sel”2 + se2°2)
"pval" = function(z) {

if (z < 0) p = 2*pnorm(z,lower.tail = T )

else p = 2+*pnorm(z,lower.tail = F)

return (p)

}
R Script 1.1. Standard Error; Z Score and P value Functions

3 Results and Discussion

3.1 Evaluation of the boot. ROC function

As mentioned in section 2, the boot. ROC function constructs a lasso penalized
model for complete data according to a scoring system using logistic regression
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and estimates the resulting traditional four curves: apparent, cross-validation,
0.632 and 0.632+. The produced results depend on patient survival.

The boot.ROC function returns a list with 10 elements. Coef is a replica of
Model@penalized, that is, the regression coefficients for the penalized co-variables
(features and status). Signature is the score for each patient, obtained by the
sum of the regression (Coef) multiplied by the values of the features. Lambda is
the value of the lasso penalty and AUC' is the mean of the area under the curve
for the four estimators. This function also generates 4 important data frames
for the false positive and false negative rates (obtained from the ROC function’s
argument cut.values): ROC.Apparent for the apparent estimator, ROC.CV for
the cross-validation estimator, ROC.632 for the 0.632 bootstrap estimator and
ROC.632p for the 0.632+ bootstrap estimator (these data frames generate each
point of the traditional curve). The last element is Model, which is a penfit object
with 15 elements (see reference [8] for details).

The evaluation of this function consisted of varying the values of its argu-
ments, specifically assessing its performance by assigning different values to the
lasso penalty (lambdal), ranging from three fixed values — 10, 15 and 20 — to
variable lambda values (lambdal = NULL) while increasing the number of boot-
strap iterations (N.boot) from 2, 50 and 100 to 1000. The precision argument
(generates the points for each curve) remained constant throughout the process,
set as a vector of 4 values (0.05, 0.35, 0.65 and 0.95).

Fixed Lambda Values. It was verified that there were no significant alter-
ations in the curves by altering the number of bootstrap iterations within the
same tuning parameter (lambda). As such, only the two extreme values (2 and
1000 iterations) were included in Figure 1. This similarity, however, was not
verified for the different lasso penalties. For 2 bootstrap iterations, there were
significant fluctuations between the apparent curves for a lasso penalty of 10
and 15 (p < 0.002) and 10 and 20 (p < 0.0003). For 1000 bootstrap iterations,
there were also significant changes for the apparent curves between the 10 and
20 lasso penalties (p < 0.01).

For the three fixed lambdas, it was found that increasing the lasso penalty
decreased the range of values present in the signature, that regardless of the
tuning parameter more patients were assigned a negative than a positive score
and that the signature was invariable with the increasing bootstrap iterations
within the same lambda.

The significant features were identified by matching the unique ID in Rosen-
wald’s NEJM_13Web _13Figldata dataset (available at http://11lmpp.nih.gov/
DLBCL) to the nonzero coefficients obtained in each result. For lasso penalties of
10, 15 and 20, 42, 24 and 10 significant features were found, respectively. For the
latter case, according to the NCBI database and publications [7], the 10 features
are well-known overexpression transcriptional factors, genes or cell types related
to the diffuse large-b-cell or other similar types of lymphoma, while the results for
the other lambdas included hypothetical proteins and other non-cancer related
genes. These results indicate that increasing the lasso penalty renders higher
accuracy in highlighting risk factors (high influence on patient survival).


http://llmpp.nih.gov/DLBCL
http://llmpp.nih.gov/DLBCL
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Lastly, it was ascertained that the number of bootstrap iterations had no
influence in the level of fit (log likelihood) of the produced model. However,
this level was directly proportional to the lasso penalty (tuning parameter of 20
produced the best results), which implies that a higher lasso penalty could be
linked to a higher accuracy in determining risk factors and patient survival.

Variable Lambda Values. In this subsection, the boot. ROC' function’s ar-
gument lambdal was set to NULL, which means that the value for the lasso
penalty is generated by cross-validation by re-estimating the tuning parameter
and selecting features at each bootstrap iteration. The fold for cross-validation
was set to 5 (default), 10 and 20 and the number of bootstrap iterations was

increased from 2 to 10.

Sensitivity (True Positive Rates) Sensitivity (True Positive Rates)

Sensitivity (True Positive Rates)

Fig. 1. ROC curves for a fixed tuning parameter of 10 (boot. ROC function).
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Figure 2(a) demonstrates the results with higher test accuracy (higher AUC
values) attained for the variable lasso penalty, found for the 5-fold at 2 bootstrap
iterations (with a lesser overestimation of the apparent curve). Figure 2(b) shows
the calculated signature for this fold, with values ranging from -1.008426 to
0.5911469 (narrower range than the observed for the fixed lambdas).

The level of fit of the model (Log likelihood) had increasingly negative values
for the 20, 10 and 5 cross-validation folds, which implies that there is better
adjustment for smaller folds.

The significant feature search for the variable lambdas yielded highly specific
matches, revealing features that are all characteristic of the diffuse large b-cell
lymphoma signature [7,11,12] and a better performance than the observed in
section 3.1.1. For 2 and 10 bootstrap iterations, 4 significant features were ac-
quired, from which three are coincident with the ones found for the fixed 20 lasso
penalty.
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Fig. 2. Produced curves and signature for a variable tuning parameter (5-fold).

3.2 Assessment of the boot. ROCt function

The boot. ROCt function constructs a lasso penalized model using the Cox’s
proportional hazards model, given a calculated signature (see section 2 for de-
tails) and estimates the corresponding time-dependent curve. Since this func-
tion is capable of dealing with censored data, the argument status from the
boot. ROC' function is replaced by the binary argument failure, where 0 means
right-censoring and 1 implies the event (in this case, death) took place. Right-
censoring, for the newDLBCLpatients dataset, since the maximum follow up
time is 21.8 years, is perceived as the patient leaving the study before that time
period or surviving after it [5,6,10].

This function returns a list similar to the one described in subsection 3.1.
The assessment of the boot. ROCt function included the process listed for the
boot. ROC function, while varying the maximum prognostic time (pro.time) for
which each variable is evaluated (from 1 to 16 years) and changing the lasso
penalty (lambdal) from variable to fixed (15). The proportion of nearest neigh-
bors (prop) was kept constant at a value of 0.02 during the course of the study
and only 2 bootstrap iterations (N.boot) were considered.
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Fig. 3. Time dependent ROC curves for variable (a) and fixed (b) tuning parameters.

Figure 3 illustrates the performance of the four estimators for right-censored
data (Apparent, Cross-Validation, 0.632 and 0.632+) by varying the argument
pro.time from 1 to 16 years, according to a variable lasso penalty.

Using the functions described in section 2, there were significant differences
(p < 0.05) between the curves for fixed and variable penalties: in the apparent
curve, for prognostic times of 9 and 14 years, in the cross-validation curve and
in the 0.6324 bootstrap curve, for 3 and 12 years. These differences are due to
the small number of observations for those specific years, leading the model to
under- or overestimate those values depending on the used approach.

The most negative log likelihood (-812.4193) and lowest number of significant
features (which ranged from 4 to 32) for the variable penalty were found for a
prognostic time of eleven years, which means that those particular models were
the most accurate in predicting patient outcome. For the fixed lambda value
of 15, independently of the prognostic time, a log likelihood of -739.6779 was
achieved and 68 relevant genes were found, indicating low reliability.

4 Conclusions

From the results described throughout section 3, the strengths and weaknesses
of the ROC632 package could be highlighted and, independently of the condition
or the function in use, some patterns in the outcomes were identified.

The most significant disadvantages of this package are that it does not cal-
culate the standard error for the estimated curves, forcing the user to calculate
it using an additional method and that the number of patients assigned to the
training and test sets is not explicitly shown in the results.

The apparent curve seemed to be overly optimistic and the cross-validation
curve considerably pessimistic. These results were expected, since these curves
only represent the training and test sets, respectively. The 0.632 and 0.632+
bootstrap curves had an overall similar performance, with marginally lower val-
ues for latter, since the 0.632+ estimator’s performance depends on the amount
of overfitting, whereas the former has a constant weight [1,14,15]. Hence, the
0.632+ estimator provided the best results with the least variance (similar re-
sults within the same condition — fixed or variable lambda) and bias (no over-
or underestimation) and it should thus be used in future analysis.
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Finally, the signature created was able to create an overall efficient prognosis

for up to 10 years, being capable of attributing a higher score to patients who
survived the longest (and were still alive). However, since most patients had died
after that time point (only 26 patients had survived), the predictions for longer
timeframes were considerably erroneous, with patients who had survived having
the same score as patients who did not. Hence, although this scoring system
could be highly accurate for well documented data, with as many observations
possible, it isn’t advised for small datasets where the data is overly repetitive in
some cases and missing in others and the number of examples is limited.
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