Skip to main content

Data-Driven Granular Cognitive Computing

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10313))

Included in the following conference series:

Abstract

Many artificial intelligence (AI) theoretical models are inspired by human/natural/social intelligence mechanisms. Three main schools of artificial intelligence have been formed, that is, symbolism, connectionism and behaviorism. Cognitive computing is one of the key fields of AI. It is a critical task for AI researchers to develop advanced cognitive computing models. Cognitive computing is the third and the most transformational phase in computing’s evolution, after the Tabulating Era and Programming Era. Inspired by human’s granularity thinking based problem solving mechanism and the cognition law of “global precedence”, a data-driven granular cognitive computing model (DGCC) is proposed in this paper. It integrates two contradictory mechanisms, namely, human’s cognition mechanism of “global precedence” which is a cognition process of “from coarser to finer” and the information processing mechanism of machine learning systems which is “from finer to coarser”. According to DGCC, deep learning is taken as a combination of symbolism and connectionism, and named hierarchical structuralism in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    Article  Google Scholar 

  2. B, J.: What’s the future of cognitive computing? http://www.forbes.com/sites/ibm/2015/02/23/whats-the-future-of-cognitive-computing-ibm-watson/#768939e51fef, forbes BrandVoice. Accessed 23 Feb 2015

  3. Bargiela, A., Pedrycz, W.: Toward a theory of granular computing for human-centered information processing. IEEE Trans. Fuzzy Syst. 16(2), 320–330 (2008)

    Article  Google Scholar 

  4. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  Google Scholar 

  5. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Dario, P., Sandini, G., Aebischer, P. (eds.) Robots and Biological Systems: Towards a New Bionics?, vol. 102, pp. 703–712. Springer, Heidelberg (1993). doi:10.1007/978-3-642-58069-7_38

    Chapter  Google Scholar 

  6. Brooks, R.A.: Intelligence without representation. Artif. Intell. 47(1–3), 139–159 (1991)

    Article  Google Scholar 

  7. Chen, L.: Topological structure in visual perception. Science 218, 699–700 (1982)

    Article  Google Scholar 

  8. Chen, L., Zhang, S., Srinivasan, M.V.: Global perception in small brains: topological pattern recognition in honey bees. Proc. Natl. Acad. Sci. 100(11), 6884–6889 (2003)

    Article  Google Scholar 

  9. Chou, G., Ma, J., Yang, H., Zhang, W.: Mathematic model of concept granular computing system. Sci. China Ser. F-Inf. Sci. 39(12), 1239–1247 (2009). (in Chinese)

    Google Scholar 

  10. De Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Approach. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  11. De Jong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  12. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: an overview. In: 2013 IEEE International Conference on ICASSP, pp. 8599–8603. IEEE (2013)

    Google Scholar 

  13. Fukushima, K.: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  Google Scholar 

  14. Goller, C., Kuchler, A.: Learning task-dependent distributed representations by backpropagation through structure. In: IEEE International Conference on Neural Networks, vol. 1, pp. 347–352. IEEE (1996)

    Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  16. Han, S.H., Chen, L.: The relationship between global properties and local properties-global precedence. Adv. Psychol. Sci. 4(1), 36–41 (1996)

    Google Scholar 

  17. Hinton, G.E., Rumelhart, D.E., Williams, R.J.: Learning internal representations by back-propagating errors. Nature 323(99), 533–536 (1986)

    MATH  Google Scholar 

  18. Hinton, G.E.: Learning multiple layers of representation. Trends Cogn. Sci. 11(10), 428–434 (2007)

    Article  Google Scholar 

  19. Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.M.: The wake-sleep algorithm for unsupervised neural networks. Science 268(5214), 1158 (1995)

    Article  Google Scholar 

  20. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  21. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  22. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  23. Jackson, P.: Introduction to Expert Systems, 3rd edn. Addison Wesley, Boston (1998)

    MATH  Google Scholar 

  24. Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  25. Jankowski, A., Skowron, A.: Toward rough-granular computing. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS, vol. 4482, pp. 1–12. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72530-5_1

    Chapter  Google Scholar 

  26. Kelly, J.E.: Computing, cognition and the future of knowing. http://www.research.ibm.com/software/IBMResearch/multimedia/Computing_Cognition_WhitePaper.pdf

  27. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  29. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  30. LeCun, Y., Boser, B., Denker, J.S., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  31. Liu, Y., Li, D., He, W., Wang, G.: Granular computing based on gaussian cloud transformation. Fundamenta Informaticae 127(1–4), 385–398 (2013)

    Google Scholar 

  32. Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2(3), 321–355 (1988)

    MathSciNet  MATH  Google Scholar 

  33. Miller, G.A.: The cognitive revolution: a historical perspective. Trends Cogn. Sci. 7(3), 141–144 (2003)

    Article  Google Scholar 

  34. Modha, D.S., Ananthanarayanan, R., Esser, S.K., et al.: Cognitive computing. Commun. ACM 54(8), 62–71 (2011)

    Article  Google Scholar 

  35. Navon, D.: Forest before trees: the precedence of global features in visual perception. Cogn. Psychol. 9(3), 353–383 (1977)

    Article  Google Scholar 

  36. Rumelhart, D.E., McClelland, J.L.: Parallel distributed processing: explorations in the microstructures of cognition (1986)

    Google Scholar 

  37. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  38. Simon, H.A.: Computer science as empirical inquiry: symbols and search. Commun. ACM 19(3), 113–126 (1976)

    Article  MathSciNet  Google Scholar 

  39. Skinner, B.F.: About Behaviorism. Vintage, New York City (2011)

    Google Scholar 

  40. Thagard, P.: Cognitive Science. The Metaphysics Research Lab Center for the Study of Language and Information, Stanford University (2011)

    Google Scholar 

  41. Wang, F.: Building knowledge structure in neural nets using fuzzy logic (1992)

    Google Scholar 

  42. Wang, G., Shi, H.: TMLNN: triple-valued or multiple-valued logic neural network. IEEE Trans. Neural Netw. 9(6), 1099–1117 (1998)

    Article  Google Scholar 

  43. Wang, G., Wang, Y.: 3DM: domain-oriented data-driven data mining. Fundamenta Informaticae 90(4), 395–426 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Wang, G., Yang, J., Xu, J.: Granular computing: from granularity optimization to multi-granularity joint problem solving. Granul. Comput. (2016). doi:10.1007/s41066-016-0032-3

  45. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, vol. 83, pp. 445–470. Springer, Heidelberg (1982). doi:10.1007/978-94-009-7798-3_15

    Chapter  Google Scholar 

  46. Xu, J., Wang, G., Deng, W.: DenPEHC: density peak based efficient hierarchical clustering. Inf. Sci. 373, 200–218 (2016)

    Article  Google Scholar 

  47. Yao, J., Vasilakos, A.V., Pedrycz, W.: Granular computing: perspectives and challenges. IEEE Trans. Cybern. 42, 1977–1989 (2013)

    Article  Google Scholar 

  48. Yao, Y.: Perspectives of granular computing. In: 2005 IEEE International Conference on Granular Computing, vol. 1, pp. 85–90. IEEE (2005)

    Google Scholar 

  49. Yao, Y.: Three-way decisions and cognitive computing. Cogn. Comput. 8(4), 543–554 (2016)

    Article  Google Scholar 

  50. Yao, Y.: A triarchic theory of granular computing. Granular Comput. 1(2), 145–157 (2016)

    Article  Google Scholar 

  51. Zadeh, L.A., Klir, G.J., Yuan, B.: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers. World Scientific, Singapore (1996)

    Book  Google Scholar 

  52. Zhang, L., Zhang, B.: Quotient Space Based Problem Solving: A Theoretical Foundation of Granular Computing. Morgan Kaufmann, Burlington (2014)

    MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Key Research and Development Program of China under grant 2016YFB1000905, the National Natural Science Foundation of China under grant 61572091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, G. (2017). Data-Driven Granular Cognitive Computing. In: Polkowski, L., et al. Rough Sets. IJCRS 2017. Lecture Notes in Computer Science(), vol 10313. Springer, Cham. https://doi.org/10.1007/978-3-319-60837-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60837-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60836-5

  • Online ISBN: 978-3-319-60837-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics