Skip to main content

Turning Krimp into a Triclustering Technique on Sets of Attribute-Condition Pairs that Compress

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10314))

Included in the following conference series:

Abstract

Mining ternary relations or triadic Boolean tensors is one of the recent trends in knowledge discovery that allows one to take into account various modalities of input object-attribute data. For example, in movie databases like IMBD, an analyst may find not only movies grouped by specific genres but see their common keywords. In the so called folksonomies, users can be grouped according to their shared resources and used tags. In gene expression analysis, genes can be grouped along with samples of tissues and time intervals providing comprehensible patterns. However, pattern explosion effects even with one more dimension are seriously aggravated. In this paper, we continue our previous study on searching for a smaller collection of “optimal” patterns in triadic data with respect to a set of quality criteria such as patterns’ cardinality, density, diversity, coverage, etc. We show how a simple data preprocessing has enabled us to use the frequent itemset mining algorithm Krimp based on MDL-principle for triclustering purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There exists a version of Krimp for mining linked relation tables, which seems to be suitable for n-ary relations as well [11].

  2. 2.

    FCA basics can found in books [5, 12] or tutorial [13].

  3. 3.

    http://bit.ly/triMLData.

  4. 4.

    http://www.alglib.net/.

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., 26–28 May 1993, pp. 207–216 (1993)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB 1994, 12–15 September 1994, Santiago de Chile, Chile, pp. 487–499 (1994)

    Google Scholar 

  3. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data Min. Knowl. Discov. 23(1), 169–214 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Siebes, A.: MDL in pattern mining a brief introduction to Krimp. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) ICFCA 2014. LNCS (LNAI), vol. 8478, pp. 37–43. Springer, Cham (2014). doi:10.1007/978-3-319-07248-7_3

    Google Scholar 

  5. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer-Verlag New York Inc., Secaucus (1999)

    Book  MATH  Google Scholar 

  6. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Closed patterns meet n-ary relations. ACM Trans. Knowl. Discov. Data 3, 3:1–3:36 (2009)

    Article  Google Scholar 

  7. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS-ConceptStruct 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995). doi:10.1007/3-540-60161-9_27

    Chapter  Google Scholar 

  8. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS-an algorithm for mining iceberg tri-lattices. In: Proceedings of the Sixth International Conference on Data Mining, ICDM 2006, Computer Society, pp. 907–911. IEEE, Washington, DC (2006)

    Google Scholar 

  9. Cerf, L., Besson, J., Nguyen, K.N., Boulicaut, J.F.: Closed and noise-tolerant patterns in n-ary relations. Data Min. Knowl. Discov. 26(3), 574–619 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ignatov, D.I., Gnatyshak, D.V., Kuznetsov, S.O., Mirkin, B.G.: Triadic formal concept analysis and triclustering: searching for optimal patterns. Mach. Learn. 101(1–3), 271–302 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koopman, A., Siebes, A.: Characteristic relational patterns. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 437–446. ACM, New York (2009)

    Google Scholar 

  12. Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer, Heidelberg (2016)

    Book  MATH  Google Scholar 

  13. Ignatov, D.I.: Introduction to formal concept analysis and its applications in information retrieval and related fields. In: Braslavski, P., Karpov, N., Worring, M., Volkovich, Y., Ignatov, D.I. (eds.) RuSSIR 2014. CCIS, vol. 505, pp. 42–141. Springer, Cham (2015). doi:10.1007/978-3-319-25485-2_3

    Chapter  Google Scholar 

  14. Mirkin, B.G., Kramarenko, A.V.: Approximate bicluster and tricluster boxes in the analysis of binary data. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 248–256. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21881-1_40

    Chapter  Google Scholar 

  15. Ignatov, D.I., Kuznetsov, S.O., Poelmans, J., Zhukov, L.E.: Can triconcepts become triclusters? Int. J. Gen. Syst. 42(6), 572–593 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaytoue, M., Kuznetsov, S.O., Macko, J., Napoli, A.: Biclustering meets triadic concept analysis. Ann. Math. Artif. Intell. 70(1–2), 55–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miettinen, P., Vreeken, J.: MDL4BMF: minimum description length for Boolean matrix factorization. TKDD 8(4), 18:1–18:31 (2014)

    Article  Google Scholar 

  18. Belohlávek, R., Trnecka, M.: From-below approximations in Boolean matrix factorization: geometry and new algorithm. J. Comput. Syst. Sci. 81(8), 1678–1697 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lingras, P., Peters, G.: Rough clustering. Wiley Interdisc. Rev.: Data Min. Knowl. Disc. 1(1), 64–72 (2011)

    Google Scholar 

Download references

Acknowledgements

We would like to thank our colleagues, Rakesh Agrawal, Arno Siebes (for the introduction to Krimp), and Jean-François Boulicaut, for their piece of advice on pattern mining.

The article chapter was prepared within the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE) and supported within the framework of a subsidy by the Russian Academic Excellence Project ‘5-100’. The second co-author was also supported by the Russian Foundation for Basic Research, grants no. 16-29-12982 and 16-01-00583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry I. Ignatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yurov, M., Ignatov, D.I. (2017). Turning Krimp into a Triclustering Technique on Sets of Attribute-Condition Pairs that Compress. In: Polkowski, L., et al. Rough Sets. IJCRS 2017. Lecture Notes in Computer Science(), vol 10314. Springer, Cham. https://doi.org/10.1007/978-3-319-60840-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60840-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60839-6

  • Online ISBN: 978-3-319-60840-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics