Abstract
Mobile robot localization is a mature field that over the years has demonstrated its effectiveness and robustness. The majority of the approaches, however, rely on a globally consistent map, and localize on it in an absolute coordinate frame. This global consistency cannot be guaranteed when the map is estimated by the robot itself, and an error in the map will likely result in the failure of the localization subsystem. In this paper we introduce a novel paradigm for localization, namely relative topometric localization, by which we forgo the need for a globally consistent map. We adopt a graph-based representation of the environment, and estimate both the topological location on the graph and the relative metrical position with respect to it. We extensively evaluated our approach and tested it against Monte Carlo localization on both simulated and real data. The results show significant improvements in scenarios where there is no globally consistent map.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that this is equivalent to the more traditional formulation with control inputs.
References
Agarwal, P., Tipaldi, G., Spinello, L., Stachniss, C., Burgard, W.: Robust map optimization using dynamic covariance scaling. In: Proceedings of the IEEE International Conference on Robotics and Automation (2013)
Andrew Howard, G.S.S., Matarić, M.J.: Multi-robot mapping using manifold representations. Proc. IEEE Special Issue Multi-robot Syst. 94(9), 1360–1369 (2006)
Badino, H., Huber, D., Kanade, T.: Real-time topometric localization. In: Proceedings of the IEEE International Conferance on Robotics and Automation (2012)
Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. Wiley, New York (2004)
Blackman, S.S.: Multiple hypothesis tracking for multiple target tracking. IEEE Aerospace Electron. Syst. Mag. 19(1), 5–18 (2004)
Blanco, J.L., González-Jiménez, J., Fernandez-Madrigal, J.A.: Sparser relative bundle adjustment (SRBA): constant-time maintenance and local optimization of arbitrarily large maps. In: Proceedings of the IEEE International Conference on Robotics and Automation (2013)
Censi, A.: An accurate closed-form estimate of ICP’s covariance. In: Proceedings of the IEEE International Conference on Robotics and Automation (2007)
Censi, A.: An ICP variant using a point-to-line metric. In: Proceedings of the IEEE International Conference on Robotics and Automation (2008)
Churchill, W., Newman, P.: Practice makes perfect? managing and leveraging visual experiences for lifelong navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation (2012)
Dayoub, F., Morris, T., Upcroft, B., Corke, P.: Vision-only autonomous navigation using topometric maps. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)
Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (1999)
Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. J. Artif. Intell. Res. 11, 391–427 (1999)
Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Trans. Intell. Transp. Syst. Mag. 2, 31–43 (2010)
Jensfelt, P., Austin, D., Wijk, O., Andersonn, M.: Feature based condensation for mobile robot localization. In: Proceedings of the IEEE International Conference on Robotics and Automation (2000)
Konolige, K., Marder-Eppstein, E., Marthi, B.: Navigation in hybrid metric-topological maps. In: Proceedings of the IEEE International Conference on Robotics and Automation (2011)
Krüsi, P., Bücheler, B., Pomerleau, F., Schwesinger, U., Siegwart, R., Furgale, P.: Lighting-invariant adaptive route following using iterative closest point matching. J. Field Robot. 32, 534–564 (2014)
Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation (2011)
Latif, Y., Cadena, C., Neira, J.: Robust loop closing over time. In: Proceedings of Robotics: Science and Systems (2012)
Leonard, J., Durrant-Whyte, H.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. 7(4), 376–382 (1991)
Mazuran, M., Tipaldi, G.D., Spinello, L., Burgard, W., Stachniss, C.: A statistical measure for map consistency in SLAM. In: Proceedings of the IEEE International Conference on Robotics and Automation (2014)
McManus, C., Furgale, P., Stenning, B., Barfoot, T.D.: Lighting-invariant visual teach and repeat using appearance-based lidar. J. Field Robot. 30, 254–287 (2013)
Mourikis, A.I., Roumeliotis, S.I.: On the treatment of relative-pose measurements for mobile robot localization. In: Proceedings of the IEEE International Conference on Robotics and Automation (2006)
Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for multi-target tracking. IEEE Trans. Autom. Control 54(3), 481–497 (2009)
Olson, E., Agarwal, P.: Inference on networks of mixtures for robust robot mapping. Int. J. Robot. Res. 32, 826–840 (2013)
Olson, E.B.: Real-time correlative scan matching. In: Proceedings of the IEEE International Conference on Robotics and Automation (2009)
Röwekämper, J., Sprunk, C., Tipaldi, G.D., Stachniss, C., Pfaff, P., Burgard, W.: On the position accuracy of mobile robot localization based on particle filters combined with scan matching. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)
Sibley, G., Mei, C., Reid, I., Newman, P.: Adaptive relative bundle adjustment. In: Proceedings of Robotics: Science and Systems (2009)
Sprunk, C., Tipaldi, G.D., Cherubini, A., Burgard, W.: Lidar-based teach-and-repeat of mobile robot trajectories. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)
Strasdat, H., Davison, A.J., Montiel, J., Konolige, K.: Double window optimisation for constant time visual SLAM. In: IEEE International Conference on Computer Vision (2011)
Sünderhauf, N., Protzel, P.: Switchable constraints for robust pose graph SLAM. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)
Tipaldi, G.D., Arras, K.O.: FLIRT - interest regions for 2D range data. In: Proceedings of the IEEE International Conference on Robotics and Automation (2010)
Tipaldi, G.D., Meyer-Delius, D., Burgard, W.: Lifelong localization in changing environments. Int. J. Robot. Res. 32(14), 1662–1678 (2013)
Xu, D., Badino, H., Huber, D.: Topometric localization on a road network. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2014)
Acknowledgements
This work has been partially supported by the European Commission under the grant numbers ERC-AG-PE7-267686-LIFENAV, FP7-610603-EUROPA2, and H2020-645403-ROBDREAM.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Mazuran, M., Boniardi, F., Burgard, W., Tipaldi, G.D. (2018). Relative Topometric Localization in Globally Inconsistent Maps. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-60916-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60915-7
Online ISBN: 978-3-319-60916-4
eBook Packages: EngineeringEngineering (R0)