Abstract
This article proposes a non-invasive system to stimulate the rehabilitation of motor skills, both of the upper limbs and lower limbs. The system contemplates two ambiances for human-computer interaction, depending on the type of motor deficiency that the patient possesses, i.e., for patients with chronic injuries, an augmented reality environment is considered, while virtual reality environments are used in people with minor injuries. In the cases mentioned, the interface allows visualizing both the routine of movements performed by the patient and the actual movement executed by him. This information is relevant for the purpose of (i) stimulating the patient during the execution of rehabilitation, and (ii) evaluation of the movements made so that the therapist can diagnose the progress of the patient’s rehabilitation process. The visual environment developed for this type of rehabilitation provides a systematic application in which the user first analyzes and generates the necessary movements in order to complete the defined task. The results show the efficiency of the system generated by the human-computer interaction oriented to the development of motor skills.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Organización Mundial de la Salud: Informe Mundial sobre la Discapacidad (2011)
Silver, B.: Virtual reality versus reality in post-stroke rehabilitation. Lancet Neurol. 15(10), 996 (2016)
O’Sullivan, S., Schmitz, T., Fulj, G.: Physical Rehabilitation, USA, pp. 333, 443 (2014)
Chambers, A., Smith, P., Sim, M., LaMontagne, A.: Comparison of Two Measures of Work Functioning in a Population of Claimants with Physical and Pshychological Injuries. Springer Science+Business Media, Dordrecht (2016)
Chang, Y.-J., Chen, S.-F., Huang, J.-D.: A kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 32(6), 2566–2570 (2011). Cited 332 times
Lange, B., Chang, C.Y., Suma, E., Newman, B., Rizzo, A.S., Bolas, M.: Development and evaluation of low cost game-based balance rehabilitation tool using the microsoft kinect sensor. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biolog Society, Boston, MA, pp. 1831–1834 (2011)
Vela Nuñez, M., Avizzano, C.A., Carrozzino, M., Frisoli, A., Bergamasco, M.: Multi-modal virtual reality system for accessible in-home post-stroke arm rehabilitation. In: 2013 IEEE ROMAN, Gyeongju, pp. 780–785 (2013)
Hoei, T., Kawahira, K., Fukuda, H., Sihgenobu, K., Shimodozono, M., Ogura, T.: Use of an arm weight-bearing combined with upper-limb reaching apparatus to facilitate motor paralysis recovery in an incomplete spinal cord injury patient: a single case report. J. Phys. Therary Sci. 29, 176–180 (2017)
Bejarano, N., Maggioni, S., Rijcke, L., Cifuentes, C., Reinkensmeyer, D.: Robot-Assisted Rehabilitation Therapy Recovery Mechanisms and Their Implications for Machine Design, Emerging Therapies in Neurorehabilitation II, pp. 197–223 (2015)
Vos-Vromans, D., Smeets, R., Hujinen, I., Koke, A., Hitters, W., et al.: Multidisciplinary rehabilitation treatment versus cognitive behavioural therapy for patients with chronic fatigue syndrome: a randomized controlled trial. J. Intern. Med. 279, 268–282 (2016)
Tao, G., Archambault, P.S., Levin, M.F.: Evaluation of kinect skeletal tracking in a virtual reality rehabilitation system for upper limb hemiparesis. In: International Conference on Virtual Rehabilitation (ICVR), pp. 164–165 (2013)
Andaluz, V., Salazar, P., Silva, S., Escudero, V., Bustamante, D.: Rehabilitation of upper limb with force feedback. In: 2016 IEEE International Conference on Automatica (ICA-ACCA) (2016)
Andaluz, V.H., et al.: Virtual reality integration with force feedback in upper limb rehabilitation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10073, pp. 259–268. Springer, Cham (2016). doi:10.1007/978-3-319-50832-0_25
Andaluz, V.H., Chicaiza, F.A., Gallardo, C., Quevedo, W.X., Varela, J., Sánchez, J.S., Arteaga, O.: Unity3D-MatLab simulator in real time for robotics applications. In: De Paolis, L., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2016. LNCS, vol. 9768, pp. 246–263. Springer, Cham (2016). doi:10.1007/978-3-319-40621-3_19
Davis, M., Can, D., Pindrink, J., et al: Virtual Interactive Presence in Global Surgical Education: International Collaboration Through Augmented Reality, pp. 103–111. Science Direct (2016)
Huang, Y., Backman, K., Backman, S., Chang, L.: Exploring the implications of virtual reality technology in tourism marketing: an integrated research framework. Int. J. Tour. Res. 18, 116–128 (2016)
Pallavicini, F., Argenton, L., Toniazzi, N., Aceti, L., Mantovani, F.: Virtual reality applications for stress management training in the militry. Aerosp. Med. Hum. Perform. 87, 1021–1030 (2016)
Rothbaum, B.O., Price, M., Jovanovic, T., Norrholm, S.D., Gerardi, M., Dunlop, B., Ressler, K.J.: A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. Am. J. Psychiatry 171, 640–648 (2014)
Schreuder, H.W., Persson, J.E., Wolswijk, R.G., Ihse, I., Schijven, M.P., Verheijen, R.H.: Validation of a novel virtual reality simulator for robotic surgery. Sci. World J. 2014, 1–10 (2014). ID:507076
Padilla-Castaneda, M.A., Sotgiu, E., Frisoli, A., Bergamasco, M., Orsini, P., Martiradonna, A., Laddaga, C.: A virtual reality system for robotic-assisted orthopedic rehabilitation of forearm and elbow fractures. In: International Conference on Intelligent Robots and Systems, pp. 1506–1511 (2013)
Menezes, R.C., Batista, P.K.A., Ramos, A.Q., Medeiros, A.F.C.: Development of a complete game based system for physical therapy with kinect. In: Serious Games and Applications for Health (SeGAH), pp. 1–6 (2014)
Faroque, S., Horan, B., Adam, H., Pangestu, M., Thomas, S.: Haptic virtual reality training environment for micro-robotic cell injection. In: Kajimoto, H., Ando, H., Kyung, K.-U. (eds.) Haptic Interaction, pp. 245–249. Springer, Japan (2015)
Rincon, A., Yamasaki, H., Shimoda, S.: Design of a video game for rehabilitation using motion capture, EMG analysis and virtual reality. In: International Conference on Electronic, Communications and Computers, pp. 198–204 (2016)
Levin, M.F., Magdalon, E.C., Michaelsen, S.M., Quevedo, A.A.: Quality of grasping and the role of haptics in a 3-D immersive virtual reality environment in individuals with stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 1047–1055 (2015)
Lipovsky, R., Ferreira, H.: Hand therapist: a rehabilitation approach based on wearable technology and video gaming. In: 4th Portuguese Meeing on Bioengineering, Portugal (2015)
Yoshida, H., Honda, T., Lee, J., Yano, S., Kakei, S., Kondo, T.: Development of a system for quantitative evaluation of motor function using Kinect v2 sensor. In: Micro-NanoMechatronics and Human Science (MHS), pp. 1–6 (2016)
Harshfield, N., Chang, D., Rammohan: A Unity 3D framework for algorithm animation. In: Computer Games: Al, Animation, Mobile, Multimedia, Education and Serious Games (CGAMES), USA (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Quevedo, W.X. et al. (2017). Assistance System for Rehabilitation and Valuation of Motor Skills. In: De Paolis, L., Bourdot, P., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2017. Lecture Notes in Computer Science(), vol 10325. Springer, Cham. https://doi.org/10.1007/978-3-319-60928-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-60928-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60927-0
Online ISBN: 978-3-319-60928-7
eBook Packages: Computer ScienceComputer Science (R0)