Skip to main content

Feature-Based Elicitation of Cognitively Efficient Visualizations for SPL Configurations

  • Chapter
  • First Online:
Human Centered Software Product Lines

Abstract

Configuring a SPL is a cognitively difficult activity that requires a deep understanding of the features and their constraints to be performed effectively. To this end, SPL configurators have been equipped with various visualizations to assist users in their tasks. However, there are many ways to visualize data: the process of associating an efficient visualization to a given (configuration) task is neither well-understood nor systematically applied, resulting in confusing visualizations yielding configuration errors. In this chapter, we offer such a process, based on theories of the visualization community for data representation. The first step consists in choosing the data to be visualized. This selection induces restrictions on the types of visualization that are then computed based on the data characteristics and best practices from semiology and visual languages. Designers can then select an efficient visualization for the intended task. Our process is supported by feature models and FAMILIAR to merge and constrain the set of applicable visualizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acher M, Collet P, Lahire P, France RB. Familiar: a domain-specific language for large scale management of feature models. Sci Comput Program. 2013;78(6):657–81.

    Article  Google Scholar 

  2. Bertin J. Semiology of graphics: diagrams, networks, maps (wj berg, trans.). Madison: The University of Wisconsin Press, Ltd; 1983.

    Google Scholar 

  3. Cleveland WC, McGill ME. Dynamic graphics for statistics. 1st ed. Boca Raton: CRC Press, Inc.; 1988. ISBN: 053409144X.

    Google Scholar 

  4. Deelstra S, Sinnema M, Bosch J. A product derivation framework for software product families. In: Software product-family engineering. Berlin/Heidelberg: Springer; 2004. p. 473–84.

    Chapter  Google Scholar 

  5. Guettala AET, Bouali F, Guinot C, Venturini G. A user assistant for the selection and parameterization of the visualizations in visual data mining. In: 2012 16th International Conference on Information Visualisation (IV). Los Alamitos: IEEE; 2012. p. 252–57.

    Chapter  Google Scholar 

  6. Johnson B, Shneiderman B. Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the IEEE Conference on Visualization, Visualization’91. Los Alamitos: IEEE; 1991. p. 284–91.

    Google Scholar 

  7. Lopez-Herrejon RE, Batory D. A standard problem for evaluating product-line methodologies. In: Generative and component-based software engineering. Berlin/Heidelberg: Springer; 2001. p. 10–24.

    Chapter  Google Scholar 

  8. MacEachren AM. How maps work: representation, visualization, and design. New York/London: Guilford Press; 2004.

    Google Scholar 

  9. Mackinlay J. Automating the design of graphical presentations of relational information. Acm Trans Graph. (Tog) 1986;5(2):110–41.

    Google Scholar 

  10. Murashkin A, Antkiewicz M, Rayside D, Czarnecki K. Visualization and exploration of optimal variants in product line engineering. In: Proceedings of the 17th International Software Product Line Conference. New York: ACM; 2013. p. 111–15.

    Google Scholar 

  11. Nöhrer A, Egyed A. C2o: a tool for guided decision-making. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering. New York: ACM; 2010. p. 363–64.

    Chapter  Google Scholar 

  12. Pleuss A, Botterweck G. Visualization of variability and configuration options. Int J Softw Tools Technol Transfer. 2012;14(5):497–510.

    Article  Google Scholar 

  13. Pohl K, Böckle G, van der Linden FJ. Software product line engineering: foundations, principles, and techniques. Berlin: Springer; 2005. doi:10.1007/3-540-28901-1.

    MATH  Google Scholar 

  14. Ravat F, Teste O, Zurfluh G. Algebre olap et langage graphique. 2010. arXiv preprint arXiv:1005.0213.

    Google Scholar 

  15. Robertson PK. A methodology for choosing data representations. IEEE Comput Graph Appl. 1991;11(3):56–67.

    Article  Google Scholar 

  16. Schulz HJ. Treevis. net: a tree visualization reference. IEEE Comput Graph Appl. 2011;31(6):11–5.

    Article  Google Scholar 

  17. Sedlmair M, Meyer M, Munzner T. Design study methodology: reflections from the trenches and the stacks. IEEE Trans Vis Comput Graph. 2012;18(12):2431–40.

    Article  Google Scholar 

  18. She S, Lotufo R, Berger T, Wasowski A, Czarnecki K. The variability model of the linux kernel. VaMoS. 2010;10:45–51.

    Google Scholar 

  19. Stasko J, Catrambone R, Guzdial M, McDonald K. An evaluation of space-filling information visualizations for depicting hierarchical structures. Int J Hum Comput Stud. 2000;53(5):663–94.

    Article  MATH  Google Scholar 

  20. Steger M, Tischer C, Boss B, Müller A, Pertler O, Stolz W, Ferber S. Introducing pla at bosch gasoline systems: experiences and practices. In: Software product lines. Berlin/Heidelberg: Springer; 2004. p. 34–50.

    Chapter  Google Scholar 

  21. Stevens SS. On the theory of scales of measurement. Science. 1946;103(2684): 677–80.

    Article  MATH  Google Scholar 

  22. Thum T, Kstner C, Benduhn F, Meinicke J, Saake G, Leich T. FeatureIDE: an extensible framework for feature-oriented software development. Sci Comput Program. 2014;79:70–85.

    Article  Google Scholar 

  23. Wilkinson L. The grammar of graphics (statistics and computing). New York: Springer; 2005. ISBN: 0387245448.

    MATH  Google Scholar 

  24. Zhang J. A representational analysis of relational information displays. Int J Hum Comput Stud. 1996;45(1):59–74.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the European Regional Development Fund (ERDF IDEES/CO-INNOVATION).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Sauvage-Thomase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sauvage-Thomase, C., Biri, N., Perrouin, G., Genon, N., Heymans, P. (2017). Feature-Based Elicitation of Cognitively Efficient Visualizations for SPL Configurations. In: Sottet, JS., García Frey, A., Vanderdonckt, J. (eds) Human Centered Software Product Lines. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-60947-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60947-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60945-4

  • Online ISBN: 978-3-319-60947-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics