Abstract
Multiparametric magnetic resonance imaging (mp-MRI) has shown its potential in prostate cancer detection. In this study, we investigate the application of 3D texton based prostate cancer detection using T2-weighted (T2W) MRI, dynamic contrast-enhanced (DCE) MRI and apparent diffusion coefficient (ADC) maps. For the T2W and ADC modalities, the traditional texton based approach is adopted, i.e., for each voxel, a texton histogram is extracted as the feature to perform the classification. For the DCE data, we present a new method, where the textons are extracted from each series and for each voxel, the corresponding textons across all series are used as features. A random forest classifier is applied for classifying all voxels into benign or malignant. The evaluation is conducted by performing a receiver operating characteristics (ROC) analysis and computing the area under the curve (AUC). The experiments on the Initiative for Collaborative Computer Vision Benchmarking (I2CVB) database demonstrate that the texton based approach using mp-MRI data obtains excellent performance in prostate cancer detection and produces \(88.3\%\) accuracy, whereas the accuracy produced by an intensity based approach is \(79.8\%\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., Parkin, D.M.: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127(12), 2893–2917 (2008)
Siegel, R., Naishadham, D., Jemal, A.: Cancer statistics. CA Cancer J. Clin. 63(1), 11–30 (2013)
Etzioni, R., Penson, D.F., Legler, J.M., Di Tommaso, D., Boer, R., Gann, P.H., Feuer, E.J.: Overdiagnosis due to prostate-specific antigen screening: lessons from US prostate cancer incidence trends. J. Natl Cancer Inst. 94(13), 981–990 (2002)
Chou, R., Croswell, J.M., Dana, T., Bougatsos, C., Blazina, I., Fu, R., Gleitsmann, K., Koenig, H.C., Lam, C., Maltz, A., Rugge, J.B.: Screening for prostate cancer: a review of the evidence for the US preventive services task force. Ann. Intern. Med. 155(11), 762–771 (2011)
Schröder, F.H., Carter, H.B., Wolters, T., van den Bergh, R.C., Gosselaar, C., Bangma, C.H., Roobol, M.J.: Early detection of prostate cancer in 2007: part 1: PSA and PSA kinetics. Eur. Urol. 53(3), 468–477 (2007)
Delpierre, C., Lamy, S., Kelly-Irving, M., Molini, F., Velten, M., Tretarre, B., Woronoff, A.S., Buemi, A., Laptre-Ledoux, B., Bara, S., Guizard, A.V.: Life expectancy estimates as a key factor in over-treatment: the case of prostate cancer. Cancer Epidemiol. 37(4), 462–468 (2013)
Delongchamps, N.B., Peyromaure, M., Schull, A., Beuvon, F., Bouazza, N., Flam, T., Zerbib, M., Muradyan, N., Legman, P., Cornud, F.: Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J. Urol. 189(2), 493–499 (2013)
Vos, P.C., Barentsz, J.O., Karssemeijer, N., Huisman, H.J.: Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis. Phys. Med. Biol. 57(6), 1527 (2012)
Viswanath, S., Bloch, B.N., Chappelow, J., Patel, P., Rofsky, N., Lenkinski, R., Genega, E., Madabhushi, A.: Enhanced multi-protocol analysis via intelligent supervised embedding (EMPrAvISE): detecting prostate cancer on multi-parametric MRI. In: Proceedings of SPIE 7963, Medical Imaging 2011: Computer-Aided Diagnosis, p. 79630U (2011)
Tiwari, P., Kurhanewicz, J., Madabhushi, A.: Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS. Med. Image Anal. 17(2), 219–235 (2013)
Trigui, R., Mitran, J., Walker, P.M., Sellami, L., Hamida, A.B.: Automatic classification and localization of prostate cancer using multi-parametric MRI/MRS. Biomed. Sig. Process. Control 31, 189–198 (2017)
Lemaître, G., Mart, R., Freixenet, J., Vilanova, J.C., Walker, P.M., Meriaudeau, F.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: a review. Comput. Biol. Med. 60, 8–31 (2015)
Zhang, L., Fisher, M., Wang, W.: Retinal vessel segmentation using Gabor filter and textons. In: Medical Image Understanding and Analysis, pp. 155–160 (2014)
Gangeh, M.J., Srensen, L., Shaker, S.B., Kamel, M.S., De Bruijne, M., Loog, M.: A texton-based approach for the classification of lung parenchyma in CT images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 595–602 (2010)
Julesz, B.: A theory of preattentive texture discrimination based on first-order statistics of textons. Biol. Cybern. 41(2), 131–138 (1981)
Rampun, A., Tiddeman, B., Zwiggelaar, R., Malcolm, P.: Computer aided diagnosis of prostate cancer: a texton based approach. Med. Phys. 43(10), 5412–5425 (2016)
Lemaître, G., Dastjerdi, M.R., Massich, J., Vilanova, J.C., Walker, P.M., Freixenet, J., Meyer-Baese, A., Mriaudeau, F., Mart, R.: Normalization of T2W-MRI prostate images using Rician a priori. In: SPIE Medical Imaging 2016: Computer-Aided Diagnosis, p. 9785 (2016)
Lemaître, G.: Computer-aided diagnosis for prostate cancer using multi-parametric magnetic resonance imaging. Doctoral dissertation, Universite de Bourgogne; Universitat de Girona (2016)
Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)
Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied logistic regression, vol. 398. Wiley, Hoboken (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Wang, L., Zwiggelaar, R. (2017). 3D Texton Based Prostate Cancer Detection Using Multiparametric Magnetic Resonance Imaging. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-60964-5_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60963-8
Online ISBN: 978-3-319-60964-5
eBook Packages: Computer ScienceComputer Science (R0)