Skip to main content

Feature Extraction and Classification to Diagnose Hypoxic-Ischemic Encephalopathy Patients by Using Susceptibility-Weighted MRI Images

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 723))

Included in the following conference series:

  • 3248 Accesses

Abstract

In this paper a method is presented to enable automatic classification of the degree of abnormality of susceptibility-weighted images (SWI) acquired from babies with hypoxic-ischemic encephalopathy (HIE), in order to more accurately predict eventual cognitive and motor outcomes in these infants. SWI images highlight the cerebral venous vasculature and can reflect abnormalities in blood flow and oxygenation, which may be linked to adverse outcomes. A qualitative score based on magnetic resonance imaging (MRI) analyses is assigned to SWIs by specialists to determine the severity of abnormality in an HIE patient. The method allows the detection of image ridges, representing the vessels in SWIs, and the histogram of the ridges grey scales. A curve with only four parameters is fitted to the histograms. These parameters are then used to estimate the SWI abnormality score. The images are classified by using a kNN- and multiple SVM classifiers based on the parameters of the fitting curves. The algorithm is tested on an SWI-MRI dataset consisting of 10 healthy infants and 48 infants with HIE with a range of SWI abnormality scores between 1 and 7. The accuracy of classifying babies with HIE vs. those without (i.e.: healthy controls) using our algorithm with a leave-one-out strategy is measured as 91.38%. Our method is fast and could increase the prognostic value of these scans, thereby improving management of the condition, as well as elucidating the disease mechanisms of HIE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perlman, J.M.: Summary proceedings from the neurology group on hypoxic-ischemic encephalopathy. Pediatrics 117(Suppl. 1), S28–S33 (2006)

    Article  Google Scholar 

  2. Fatemi, A., Wilson, M.A., Johnston, M.V.: Hypoxic-ischemic encephalopathy in the term infant. Clin. Perinatol. 36(4), 835–858 (2009)

    Article  Google Scholar 

  3. James, A., Patel, V.: Hypoxic ischaemic encephalopathy. Paediatr. Child Health 24(9), 385–389 (2014)

    Article  Google Scholar 

  4. Shankaran, S., et al.: Effect of depth and duration of cooling on deaths in the NICU among neonates with hypoxic ischemic encephalopathy: a randomized clinical trial. Jama 312(24), 2629–2639 (2014)

    Article  Google Scholar 

  5. Friberg, H., Cronberg, T.: Hypoxic–ischemic encephalopathy. In: Seminars in Neurology, vol. 37. no. 01. Thieme Medical Publishers (2017)

    Google Scholar 

  6. Ou, C.-X., Xiao, F.-Y., Sun, D.-C.: The value of diffusion weighted imaging in the early diagnosis and prognostic evaluation of neonatal HIE. Chin. J. CT MRI 1, 011 (2013)

    Google Scholar 

  7. Bozzao, A., et al.: Diffusion-weighted MR imaging in the early diagnosis of periventricular leukomalacia. Eur. Radiol. 13(7), 1571–1576 (2003)

    Article  Google Scholar 

  8. Massaro, A.N., et al.: Short-term outcomes after perinatal hypoxic ischemic encephalopathy: a report from the children’s hospitals neonatal consortium HIE focus group. J. Perinatol. 35(4), 290–296 (2015)

    Article  Google Scholar 

  9. Vergales, B.D., et al.: Depressed heart rate variability is associated with abnormal EEG, MRI, and death in neonates with hypoxic ischemic encephalopathy. Am. J. Perinatol. 31(10), 855–862 (2014)

    Article  Google Scholar 

  10. Winchell, A.M., et al.: Evaluation of SWI in children with sickle cell disease. Am. J. Neuroradiol. 35(5), 1016–1021 (2014). Hladůvka, J., König, A., Gröller, E.: Exploiting eigenvalues of the Hessian matrix for volume decimation (2001)

    Article  Google Scholar 

  11. Bofill, J.M., Quapp, W.: Analysis of the valley-ridge inflection points through the partitioning technique of the Hessian eigenvalue equation. J. Math. Chem. 51(3), 1099–1115 (2013)

    Article  MATH  Google Scholar 

  12. Staal, J., et al.: Ridge-based vessel segmentation in color images of the retina. IEEE trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  13. Annunziata, R., et al.: Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J. Biomed. Health Inform. 20(4), 1129–1138 (2016)

    Article  Google Scholar 

  14. Wang, Y., et al.: Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recogn. 46(8), 2117–2133 (2013)

    Article  Google Scholar 

  15. Hajian-Tilaki, K.: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 4(2), 627 (2013)

    Google Scholar 

  16. Hand, D.J.: Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach. Learn. 77(1), 103–123 (2009)

    Article  Google Scholar 

  17. Barkovich, A.J., et al.: Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. Am. J. Neuroradiol. 19(1), 143–149 (1998)

    Google Scholar 

  18. Chen, D., Cohen, L.D.: Automatic tracking of retinal vessel segments using radius-lifted minimal path method. In: MIUA 2015 (2015)

    Google Scholar 

  19. Kitamura, G., et al.: Hypoxic-ischemic injury: utility of susceptibility-weighted imaging. Pediatr. Neurol. 45(4), 220–224 (2011)

    Article  Google Scholar 

  20. Guo, L., Wang, D., Bo, G., Zhang, H., Tao, W., Shi, Y.: Early identification of hypoxic-ischemic encephalopathy by combination of magnetic resonance (MR) imaging and proton MR spectroscopy. Exp. Ther. Med. 12(5), 2835–2842 (2016). doi:10.3892/etm.2016.3740

    Google Scholar 

  21. Murphy, K., van der Aa, N.E., Negro, S., Groenendaal, F., de Vries, L.S., Viergever, M.A., Boylan, G.B., Benders, M.J.N.L., Išgum, I.: Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy. NeuroImage: Clin. 14, 222–232 (2017). doi:10.1016/j.nicl.2017.01.005

    Article  Google Scholar 

Download references

Acknowledgment

The research database is provided by Dr. Brigitte Vollmer and Dr. Angela Darekar, Southampton General Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisi Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wu, S., Mahmoodi, S., Darekar, A., Vollmer, B., Lewis, E., Liljeroth, M. (2017). Feature Extraction and Classification to Diagnose Hypoxic-Ischemic Encephalopathy Patients by Using Susceptibility-Weighted MRI Images. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics