Skip to main content

Motion Compensation Using Range Imaging in C-Arm Cone-Beam CT

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Abstract

Cone-beam C-arm CT systems allow to scan patients in weight-bearing positions to assess knee cartilage health under more realistic conditions. Involuntary patient motion during the acquisition results in motion artifacts in the reconstructions. The current motion estimation method is based on fiducial markers. They can be tracked with a high spatial accuracy in the projection images, but only deliver sparse information. Further, placement of the markers on the patient’s leg is time consuming and tedious. Instead of relying on a few well defined points, we seek to establish correspondences on dense surface data to estimate 3D displacements.

In this feasibility study, motion corrupted X-ray projections and surface data are simulated. We investigate motion estimation by registration of the surface information. The proposed approach is compared to a motion free, an uncompensated, and a state-of-the-art marker-based reconstruction using the SSIM.

The proposed approach yields motion estimation accuracy and image quality close to the current state-of-the-art, reducing the motion artifacts in the reconstructions remarkably. Using the proposed method, Structural Similarity improved from 0.887 to 0.975 compared to uncorrected images. The results are promising and encourage future work aiming at facilitating its practical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www5.cs.fau.de/research/software/java-parallel-optimization-package/.

References

  1. Aichert, A., Wang, J., Schaffert, R., Dörfler, A., Hornegger, J., Maier, A.: Epipolar consistency in fluoroscopy for image-based tracking. In: Proceedings of BMVC, pp. 82.1–82.10 (2015)

    Google Scholar 

  2. Bauer, S., et al.: Real-time range imaging in health care: a survey. In: Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds.) Time-of-Flight and Depth Imaging. LNCS, vol. 8200, pp. 228–254. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Bellekens, B., Spruyt, V., Weyn, M.: A survey of rigid 3D pointcloud registration algorithms. In: The Fourth International Conference on Ambient Computing, Applications, Services and Technologies, AMBIENT 2014, pp. 8–13 (2014)

    Google Scholar 

  4. Berger, M., MĂ¼ller, K., Aichert, A., Unberath, M., Thies, J., Choi, J.H., Fahrig, R., Maier, A.: Marker-free motion correction in weight-bearing cone-beam CT of the knee joint. Med. Phys. 43(3), 1235–1248 (2016)

    Article  Google Scholar 

  5. Bier, B., Aichert, A., Felsner, L., Unberath, M., Levenston, M., Gold, G., Fahrig, R., Maier, A.: Epipolar consistency conditions for motion correction in weight-bearing imaging. In: Maier-Hein, K.H., et al. (eds.) Bildverarbeitung fĂ¼r die Medizin 2017. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54345-0_47

    Google Scholar 

  6. Choi, J.H., Fahrig, R., Keil, A., Besier, T.F., Pal, S., McWalter, E.J., Beaupré, G.S., Maier, A.: Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization. Med. Phys. 41(6), 061902 (2014)

    Article  Google Scholar 

  7. Choi, J.H., Maier, A., Keil, A., Pal, S., McWalter, E.J., Beaupré, G.S., Gold, G.E., Fahrig, R.: Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. II. Experiment. Med. Phys. 41(6), 061902 (2014)

    Article  Google Scholar 

  8. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J.V., Pieper, S., Kikinis, R.: 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  9. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612 (1984)

    Article  Google Scholar 

  10. Fischer, M., Fuerst, B., Lee, S.C., Fotouhi, J., Habert, S., Weidert, S., Euler, E., Osgood, G., Navab, N.: Preclinical usability study of multiple augmented reality concepts for K-wire placement. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1007–1014 (2016)

    Article  Google Scholar 

  11. Fotouhi, J., Fuerst, B., Wein, W., Navab, N.: Can real-time RGBD enhance intraoperative Cone-Beam CT? Int. J. Comput. Assist. Radiol. Surg. (2017). https://link.springer.com/journal/11548/onlineFirst/page/3

  12. Geimer, T., Unberath, M., Taubmann, O., Bert, C., Maier, A.: Combination of markerless surrogates for motion estimation in radiation therapy. In: Computer Assisted Radiology and Surgery (CARS) 2016, pp. 59–60 (2016)

    Google Scholar 

  13. Maier, A., Choi, J.H., Keil, A., Niebler, C., Sarmiento, M., Fieselmann, A., Gold, G., Delp, S., Fahrig, R.: Analysis of vertical and horizontal circular C-arm trajectories. In: SPIE Medical Imaging, vol. 7961, pp. 796123-1–796123-8 (2011)

    Google Scholar 

  14. Maier, A., Hofmann, H.G., Berger, M., Fischer, P., Schwemmer, C., Wu, H., MĂ¼ller, K., Hornegger, J., Choi, J.H., Riess, C., Keil, A., Fahrig, R.: CONRAD - a software framework for cone-beam imaging in radiology. Med. Phys. 40(11), 111914 (2013)

    Article  Google Scholar 

  15. McNamara, J.E., Pretorius, P.H., Johnson, K., Mukherjee, J.M., Dey, J., Gennert, M.A., King, M.A.: A flexible multicamera visual-tracking system for detecting and correcting motion-induced artifacts in cardiac SPECT slices. Med. Phys. 36(5), 1913–1923 (2009)

    Article  Google Scholar 

  16. MĂ¼ller, K., Berger, M., Choi, J., Maier, A., Fahrig, R.: Automatic motion estimation and compensation framework for weight-bearing C-arm CT scans using fiducial markers. In: IFMBE Proceedings, pp. 58–61 (2015)

    Google Scholar 

  17. MĂ¼ller, K., Berger, M., Choi, J.H., Datta, S., Gehrisch, S., Moore, T., Marks, M.P., Maier, A.K., Fahrig, R.: Fully automatic head motion correction for interventional C-arm systems using fiducial markers. In: Proceedings of the 13th Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pp. 534–537 (2015)

    Google Scholar 

  18. Ouadah, S., Stayman, J.W., Gang, G.J., Ehtiati, T., Siewerdsen, J.H.: Self-calibration of cone-beam CT geometry using 3D2D image registration. Phys. Med. Biol. 61(7), 2613–2632 (2016)

    Article  Google Scholar 

  19. Powers, C.M., Ward, S.R., Fredericson, M.: Knee extension in persons with lateral subluxation of the patella: a preliminary study. J. Orthop. Sports Phys. Ther. 33(11), 677–685 (2013)

    Article  Google Scholar 

  20. Sisniega, A., Stayman, J.W., Cao, Q., Yorkston, J., Siewerdsen, J.H., Zbijewski, W.: Image-based motion compensation for high-resolution extremities cone-beam CT. In: SPIE Medical Imaging, vol. 9783, p. 97830K (2016)

    Google Scholar 

  21. Sisniega, A., Stayman, J., Yorkston, J., Siewerdsen, J., Zbijewski, W.: Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion. Phys. Med. Biol. 62(9), 3712 (2017)

    Article  Google Scholar 

  22. Unberath, M., Choi, J.H., Berger, M., Maier, A., Fahrig, R.: Image-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees. In: SPIE Medical Imaging, vol. 9413, p. 94130D (2015)

    Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. WasenmĂ¼ller, O., Stricker, D.: Comparison of Kinect v1 and v2 depth images in terms of accuracy and precision. In: Chen, C.S., Lu, J., Ma, K.K. (eds.) ACCV 2016. LNCS, vol. 10117, pp. 34–45. Springer, Cham (2016). doi:10.1007/978-3-319-54427-4_3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Bier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bier, B. et al. (2017). Motion Compensation Using Range Imaging in C-Arm Cone-Beam CT. In: ValdĂ©s HernĂ¡ndez, M., GonzĂ¡lez-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics