Skip to main content

Glomerulus Classification with Convolutional Neural Networks

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Abstract

Glomerulus classification in kidney tissue segments is a key process in nephropathology to obtain correct diseases diagnosis. In this paper, we deal with the challenge to automate the Glomerulus classification from digitized kidney slide segments using a deep learning framework. The proposed method applies Convolutional Neural Networks (CNNs) classification between two classes: Glomerulus and Non-Glomerulus, to detect the image segments belonging to Glomerulus regions. We configure the CNN with the public pre-trained AlexNet model, and adapt it to our system by learning from Glomerulus and Non-Glomerulus regions extracted from training slides. Once the model is trained, the labelling is performed applying the CNN classification to the image segments under analysis. The results obtained indicate that this technique is suitable for correct Glomerulus classification, showing robustness while reducing false positive and false negative detections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    SVS is a semi-proprietary file format consisting on a single-file pyramidal tiled TIFF, which can be opened with Aperio ImageScope software, by Leica, and by ImageJ or Fiji via the Bio-Formats plugin, or the individual TIFF files can be extracted.

References

  1. Bueno, G., Fernandez-Carrobles, M.M., Deniz, O., Garcia-Rojo, M.: New trends of emerging technologies in digital pathology. Pathobiology 83(2–3), 61–69 (2016)

    Article  Google Scholar 

  2. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7, 29 (2016)

    Article  Google Scholar 

  3. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016)

    Article  Google Scholar 

  4. Hughson, M.D., Puelles, V.G., Hoy, W.E., Douglas-Denton, R.N., Mott, S.A., Bertran, J.F.: Hypertension, glomerular hypertrophy and nephrosclerosis: the effect of race. Nephrol. Dial. Transplant. 29(7), 1399–1409 (2014)

    Article  Google Scholar 

  5. Rasch, R., Lauszus, F., Thomsen, J.S., Flyvbjerg, A.: Glomerular structural changes in pregnant, diabetic, and pregnant diabetic rats. Apmis 113(78), 465–472 (2005)

    Article  Google Scholar 

  6. Ma, J., Jun, Z., Jinglu, H.: Glomerulus extraction by using genetic algorithm for edge patching. In: IEEE Congress on Evolutionary Computation (2009)

    Google Scholar 

  7. Hirohashi, Y., Relator, R., Kakimoto, T., Saito, R., Horai, Y., Fukunari, A., Kato, T.: Automated quantitative image analysis of glomerular desmin immunostaining as a sensitive injury marker in spontaneously diabetic torii rats. J. Biomed. Image Process 1(1), 208 (2014)

    Google Scholar 

  8. Kakimoto, T., Okada, K., Fujitaka, K., Nishio, M., Kato, T., Fukunari, A., Utsumi, H.: Quantitative analysis of markers of podocyte injury in the rat puromycin aminonucleoside nephropathy model. Exp. Toxicol. Pathol. 67(2), 171–177 (2015)

    Article  Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection In: International Confernce on Computer Vision and Pattern Recognition, vol. 1 (2005)

    Google Scholar 

  10. Kato, T., Relator, R., Ngouv, H., Hirohashi, Y., Takaki, O., Kakimoto, T., Okada, K.: Segmental HOG: new descriptor for glomerulus detection in kidney microscopy image. BMC Bioinform. 16(1), 316 (2015)

    Article  Google Scholar 

  11. Boser, B. E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. ACM (1992)

    Google Scholar 

  12. Kotyk, T., Dey, N., Ashour, A.S., Balas-Timar, D., Chakraborty, S., Ashour, A.S., Tavares, J.M.R.: Measurement of glomerulus diameter and Bowman’s space width of renal albino rats. Comput. Methods Programs Biomed. 126, 143–153 (2016)

    Article  Google Scholar 

  13. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1(4), 132–133 (1972)

    Article  MATH  Google Scholar 

  14. Zhang, M., Wu, T., Bennett, K.M.: A novel Hessian based algorithm for rat kidney glomerulus detection in 3D MRI. In: SPIE Medical Imaging. International Society for Optics and Photonics (2015)

    Google Scholar 

  15. Kothari, S., Phan, J.H., Stokes, T.H., Wang, M.D.: Pathology imaging informatics for quantitative analysis of whole-slide images. J. Am. Med. Inform. Assoc. 20(6), 1099–1108 (2013)

    Article  Google Scholar 

  16. Wang, H., Cruz-Roa, A., Basavanhally, A., Gilmore, H., Shih, N., Feldman, M., Madabhushi, A.: Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J. Med. Imaging 1(3), 034003 (2014)

    Article  Google Scholar 

  17. Malon, C.D., Cosatto, E.: Classification of mitotic figures with convolutional neural networks and seeded blob features. J. Pathol. Inform. 4(1), 9 (2013)

    Article  Google Scholar 

  18. Xu, K., Zhu, L., Wang, R., Liu, C., Zhao, Y.: Automated detection of diabetic retinopathy using deep convolutional neural networks. Med. Phys. 43(6), 3406 (2016)

    Article  Google Scholar 

  19. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Larochelle, H.: Brain tumour segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  20. Agarwal, S.K., Sethi, S., Dinda, A.K.: Basics of kidney biopsy: a nephrologist’s perspective. Indian J. Nephrol. 23(4), 243 (2013)

    Article  Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  22. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  23. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s FP7 programme under grant agreement no: 612471. http://aidpath.eu/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Bueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pedraza, A., Gallego, J., Lopez, S., Gonzalez, L., Laurinavicius, A., Bueno, G. (2017). Glomerulus Classification with Convolutional Neural Networks. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics