Abstract
Within developing countries, there is a realistic need for technologies that can assist medical practitioners in meeting the increasing demand for patient screening and monitoring. To this end, computer aided diagnosis (CAD) based approaches to chest radiograph screening can be utilised in areas where there is a high burden of diseases such as tuberculosis and pneumonia. In this work, we investigate the efficacy of a purely data-driven approach to chest radiograph classification through the use of fine-tuned convolutional neural networks (CNN). We use two popular CNN models that are pre-trained on a large natural image dataset and two distinct datasets containing paediatric and adult radiographs respectively. Evaluation is performed using a 5-fold cross-validation analysis at an image level. The promising results, with top AUC metrics of 0.87 and 0.84 for the respective datasets, along with several characteristics of our data-driven approach motivate for the use of fine-tuned CNN models within this application of CAD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Schwab, K., Sala-i Martin, X., Brende, B., Blanke, J., Bilbao-Osorio, B., Browne, C., Corrigan, G., Crotti, R., Hanouz, M.D., Geiger, T., Gutknecht, T., Ko, C., Serin, C.: The Global Competitiveness Report. Economic World Forum (2014)
Campadelli, P., Casiraghi, E., Artioli, D.: A fully automated method for lung nodule detection from postero-anterior chest radiographs. IEEE Trans. Med. Imaging 25(12), 1588–1603 (2006)
Carrillo-de Gea, J.M., Garca-Mateos, G.: Detection of normality/pathology on chest radiographs using LBP (2010)
Van Ginneken, B., Maduskar, P., Philipsen, R.H.M.M., Melendez, J., Scholten, E., Chanda, D., Ayles, H., Sánchez, C.I.: Automatic detection of pleural effusion in chest radiographs. Med. Image Anal. 28, 22–32 (2016)
Roth, H., Lu, L., Liu, J., Yao, J., Seff, A.: Improving computer-aided detection using convolutional neural networks and random view aggregation, p. 17. arXiv preprint arXiv:1505.03046 (2015)
Gao, M., Bagci, U., Lu, L., Wu, A., Buty, M., Shin, H.C., Roth, H., Papadakis, G.Z., Depeursinge, A., Summers, R.M., Xu, Z., Mollura, D.J.: Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. In: Workshop on Deep Learning in Medical Image Analysis (MICCAI). CIDI (2015)
Ciompi, F., de Hoop, B., van Riel, S.J., Chung, K., Scholten, E.T., Oudkerk, M., de Jong, P.A., Prokop, M., van Ginneken, B.: Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med. Image Anal. 26(1), 195–202 (2015)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2–9 (2009)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). Arxiv.Org
Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Proceedings of NIPS Advances in Neural Information Processing Systems 27, vol. 27, pp. 1–9 (2014)
Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J., Member, S.: Convolutional neural networks for medical image analysis : fine tuning or full training? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016). IEEE
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks, pp. 1–16 (2013)
Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M., Lu, M.G.L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298 (2016). IEEE
Bar, Y., Diamant, I., Greenspan, H., Wolf, L.: Chest Pathology Detection Using Deep Learning with Non-Medical Training. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 294–297 (2015)
Van Ginneken, B., Setio, A.A.A., Jacobs, C., Ciompi, F.: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 286–289 (2015)
Cicero, M., Bilbily, A., Colak, E., Dowdell, T., Gray, B., Perampaladas, K., Barfett, J.: Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Inves. Radiol. 52(5), 281–287 (2016)
Szegedy, C., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)
Shin, H.c., Roberts, K., Lu, L., Demner-Fushman, D., Yao, J., Summers, R.M.: Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for Automated Image Annotation (2016)
Rajkomar, A., Lingam, S., Taylor, A.G., Blum, M., Mongan, J.: High-throughput classification of radiographs using deep convolutional neural networks. J. Digit. Imaging 30(1), 95–101 (2016)
Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control, Automation, Robotics & Vision Marina Bay Sands, Singapore, 10–12th December 2014 (ICARCV 2014) Th25.2. IEEE (2014)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 9, pp. 249–256 (2010)
Krizhevsky, A., Sutskever, I., Hinton, G.E., (University of Toronto): ImageNet classification with deep convolutional neural networks (2012)
Lin, M., Chen, Q., Yan, S.: Network in network, p. 10. arXiv preprint https://arxiv.org/abs/1312.44001312.4400 (2013)
Madhi, S.A., Groome, M.J., Zar, H.J., Kapongo, C.N., Mulligan, C., Nzenze, S., Moore, D.P., Zell, E.R., Whitney, C.G., Verani, J.R.: Effectiveness of pneumococcal conjugate vaccine against presumed bacterial pneumonia hospitalisation in HIV-uninfected South African children: a case-control study. Thorax 70(12), 1–7 (2015)
Cherian, T., Mulholland, E., Carlin, J., Ostensen, H.: Standardized interpretation of paediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies variability in the interpretation of chest radiographs ! standardized method for identifying radiological pneumonia would facilitate read. Bull. World Health Organ. 83(5), 353–359 (2004)
Demner-Fushman, D., Kohli, M.D., Rosenman, M.B., Shooshan, S.E., Rodriguez, L., Antani, S., Thoma, G.R., McDonald, C.J.: Preparing a collection of radiology examinations for distribution and retrieval. J. Am. Med. Inf. Assoc. 23(2), 304–310 (2016)
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Man, D., Monga, R., Moore, S., Murray, D., Shlens, J., Steiner, B., Sutskever, I., Tucker, P., Vanhoucke, V., Vasudevan, V., Vinyals, O., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. None 1(212), 19 (2015). http://download.tensorflow.org/
Kingma, D., Ba, J.: Adam: a method for stochastic optimization, arXiv:1412.6980 [cs], pp. 1–15 (2014)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: prevent NN from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net, pp. 1–14 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Gerrand, J., Williams, Q., Lunga, D., Pantanowitz, A., Madhi, S., Mahomed, N. (2017). Paediatric Frontal Chest Radiograph Screening with Fine-Tuned Convolutional Neural Networks. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_74
Download citation
DOI: https://doi.org/10.1007/978-3-319-60964-5_74
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60963-8
Online ISBN: 978-3-319-60964-5
eBook Packages: Computer ScienceComputer Science (R0)