
Preventing Unauthorized Data Flows ?

Emre Uzun1, Gennaro Parlato2, Vijayalakshmi Atluri3, Anna Lisa Ferrara4, Jaideep
Vaidya3, Shamik Sural5, and David Lorenzi3

1 Bilkent University, Turkey emreu@bilkent.edu.tr
2 University of Southampton, UK gennaro@ecs.soton.ac.uk

3 MSIS Department, Rutgers Business School, USA
{atluri,jsvaidya,dlorenzi}@cimic.rutgers.edu

4 University of Southampton, UK al.ferrara@soton.ac.uk
5 Dept. of Computer Science and Engineering, IIT Kharagpur, India

shamik@cse.iitkgp.ernet.in

Abstract. Trojan Horse attacks can lead to unauthorized data flows and can
cause either a confidentiality violation or an integrity violation. Existing solutions
to address this problem employ analysis techniques that keep track of all subject
accesses to objects, and hence can be expensive. In this paper we show that for an
unauthorized flow to exist in an access control matrix, a flow of length one must
exist. Thus, to eliminate unauthorized flows, it is sufficient to remove all one-step
flows, thereby avoiding the need for expensive transitive closure computations.
This new insight allows us to develop an efficient methodology to identify and
prevent all unauthorized flows leading to confidentiality and integrity violations.
We develop separate solutions for two different environments that occur in real
life, and experimentally validate the efficiency and restrictiveness of the proposed
approaches using real data sets.

1 Introduction

It is well known that access control models such as Discretionary Access Control (DAC)
and Role Based Access Control (RBAC) suffer from a fundamental weakness – their
inability to prevent leakage of data to unauthorized users through malware, or malicious
or complacent user actions. This problem, also known as a Trojan Horse attack, may
lead to an unauthorized data flow that may cause either a confidentiality or an integrity
violation. More specifically, (i) a confidentiality violating flow is the potential flow of
sensitive information from trusted users to untrusted users that occurs via an illegal read
operation, and (ii) integrity violating flow is the potential contamination of a sensitive
object that occurs via an illegal write operation by an untrusted user. We now give an
example to illustrate these two cases.

Example 1. Consider a DAC policy represented as an access control matrix given in
Table 1 (r represents read , and w represents write).

? The work of Parlato and Ferrara is partially supported by EPSRC grant no. EP/P022413/1.

Table 1. Access Control Matrix

Subject o1 o2 o3 o4 o5 o6 o7
s1 r r w w w
s2 r r w w w
s3 r r r w w
s4 r r r w w
s5 r

Confidentiality violating flow: Suppose s3 wants to access data in o1. s3 can simply
accomplish this (without altering the access control rights) by exploiting s1’s read ac-
cess to o1. s3 prepares a malicious program disguised in an application (i.e., a Trojan
Horse) to accomplish this. When run by s1, and hence using her credentials, the pro-
gram will read contents of o1 and write them to o3, which s3 can read. All this is done
without the knowledge of s1. This unauthorized data flow allows s3 to read the contents
of o1, without explicitly accessing o1.

Integrity violating flow: Suppose s1 wants to contaminate the contents of o6, but she
does not have an explicit write access to it. She prepares a malicious program. When
this is run by s3, it will read from o3, that s1 has write access to and s3 has read access,
and write to o6 using s3’s credentials, causing o6 to be contaminated by whatever s1
writes to o3. This unauthorized flow allows s1 to write to o6 without explicitly accessing
o6.

Such illegal flows can occur in the many of the most common systems that we use
today because they employ DAC policies instead of a more restrictive MAC policy [2].
For example, in UNIX, the key system files are only readable by root, however, the
access control rights of the other files are determined solely by the users. If a Trojan
horse program is run with the root user’s privileges, the data in the system files, such as
the user account name and password hashes could be leaked to some untrusted users. As
another example, a similar flow might occur in Social Networks as well. For instance,
Facebook offers a very extensive and fine-grained privacy policy to protect the data
posted on user profiles. However, this policy is under the user’s control. A Trojan horse
attack is likely when the users grant access to third party Facebook applications, that
usually request access to user profile data. An untrusted application could violate the
user’s privacy settings and access confidential information.

The first step for eliminating occurrences like the ones depicted in the example
above is to perform a security analysis. To date, existing solutions to address such
problems give the impression that such unauthorized flows could only be efficiently
prevented in a dynamic setting (i.e., only by examining the actual operations), while
preventing them in a static setting (i.e., by examining the authorization specifications)
would require the computation of the transitive closure and therefore be very expensive.
However, in this paper, we show that a transitive closure is not needed for the static case
and less expensive analyses can be used to solve this problem. More precisely, we have
discovered that merely identifying and then restricting a single step data flow, as op-
posed to the entire path, is sufficient to prevent the unauthorized flow. This new insight

has significantly changed the dimensions of the problem and allows us to offer a variety
of strategies that fit different situational needs.

Consider the following situations which have differing solution requirements. For
example, in embedded system environments complex monitors cannot be deployed due
to their computation or power requirements and therefore existing dynamic preven-
tive strategies are not applicable. Similarly, there are solutions for cryptographic access
control[8, 13], where accesses are not mediated by a centralized monitor and therefore
easily offer distributed trust. In such cases, the access control policy needs to be "data
leakage free" by design. In other situations, when there are no special computational
or power constraints, a monitor can be used, and therefore can be utilized to prevent
data leakages. However, there may also be situations where access needs to be granted
even if a data leakage may occur and then audited after the fact. This would happen in
emergencies, which is why break-glass models exist [5, 23, 25].

Therefore, in this paper, we develop different solutions to address both the confiden-
tiality and integrity violations. Specifically, we propose a data leakage free by design
approach that analyzes the access control matrix to identify “potential” unauthorized
flows and eliminates them by revoking necessary read and write permissions. Since this
eliminates all potential unauthorized flows, regardless of whether they actually occur
or not, this could be considered too restrictive. However, it is perfectly secure in the
sense that no data leakages can ever occur, and of course this is the only choice when
monitoring is not feasible. Although it may seem very restrictive in the first place, we
apply this only to the untrusted sections of the access control system. It is important
to note that in all potential unauthorized flows one can only be sure of a violation by
performing a content analysis of the objects. This is outside the scope of the paper. We
also develop a monitor based approach, in which object accesses are tracked dynami-
cally at each read and write operation. Thus, any suspicious activity that could lead to
an unauthorized data flow can be identified and prevented at the point of time that it
occurs. Thus, this approach only restricts access if there is a signal for an unauthorized
data flow.

The fact that it is adequate to identify and eliminate one-step flows allows us to
identify a limited set of accesses that are both necessary and sufficient to prevent all
confidentiality and integrity violations. On the other hand, earlier approaches proposed
in the literature [21, 32, 17] keep track of all the actions and maintain information rel-
evant to these to eliminate unauthorized flows, and therefore are more expensive than
our proposed approach. Moreover, while Mao et al. [21] and Zimmerman et al. [32]
address the issue of integrity violation, Jaume et al. [17] address the issue of confiden-
tiality violation, however, none of them tackle both of these problems.

This paper is organized as follows. In Section 2, we present preliminary background
for our analysis, and in Sections 3 and 4 we present the details of the two strategies. In
Section 5, we present the results of our empirical evaluation. In Section 6, we review
the related work. In Section 7, we give our concluding remarks and provide an insight
into our future work on this problem. Some of the proofs of the theorems and lemmas
are presented in the Appendix.

2 Preliminaries

Access Control Systems. An access control system (ACS for short) C is a tuple (S,O,
→r,→w), where S is a finite set of subjects, O is a finite set of objects,→r⊆ O × S,
and →w⊆ S × O. We always assume that O and S are disjoint. A pair (o, s) ∈→r,
also denoted o →r s, is a permission representing that subject s can read object o.
Similarly, a pair (s, o) ∈→w, denoted s→w o, is a permission representing that subject
s can write into object o. For the sake of simplicity, we consider only read and write
permissions as any other operation can be rewritten as a sequence of read and write
operations.

Graph Representation of ACS. An ACS can be naturally represented with a bipartite
directed graph [30] . The graph of an ACS, C = (S,O,→r,→w), denoted GC , is the
bipartite graph (S,O,→) whose partition has the parts S and O with edges→= (→r

∪ →w). Figure 1 shows the graph representation of the ACS shown in Table 1.

o1

s1

o2 o3 o4 o5 o6 o7

s2 s3 s4 s5

Fig. 1. Graph representation of the ACS given in Table 1

Vulnerability Paths. In an access control system C, a flow path from object o to object
o′, denoted o o′, is a path in GC from o to o′, which points out the possibility of
copying the content of o into o′. The length of a flow path corresponds to the number of
subjects along the path. For example, o1 →r s1 →w o3 (denoted as o1 o3) is a flow
path of length 1, while o1 →r s1 →w o3 →r s3 →w o6 (denoted as o1 o6) is a flow
path of length 2 of the ACS shown in Figure 1. In all, there are 12 flow paths of length
1, while there are 4 flow paths of length 2 in the ACS shown in Figure 1.

Confidentiality Vulnerability: An ACS C has a confidentiality vulnerability, if there are
two objects o and o′, and a subject s such that o o′ →r s (confidentiality vulnera-
bility path or simply vulnerability path), and o 6→r s. A confidentiality vulnerability,
shows that subject s (the violator) can potentially read the content of object o through
o′, though s is not allowed to read directly from o. We represent confidentiality vul-
nerabilities using triples of the form (o, o′, s). For example, the ACS depicted in Fig-
ure 1 has the confidentiality vulnerability (o1, o3, s3) since o1 o3 and o3 →r s3 but
o1 6→r s3. Similarly, (o2, o6, s5) is another confidentiality vulnerability since o2 o6
and o6 →r s5 but o2 6→r s5. In total, there are 15 confidentiality vulnerabilities:

(o1, o3, s3), (o1, o3, s4), (o1, o4, s3), (o1, o4, s4), (o1, o5, s3), (o1, o5, s4), (o2, o3, s3),
(o2, o3, s4), (o2, o4, s3), (o2, o4, s4), (o2, o5, s3), (o2, o5, s4), (o5, o6, s5), (o1, o6, s5),
(o2, o6, s5).

Integrity Vulnerability: An ACS C has an integrity vulnerability, if there exist a subject
s, and two objects o and o′ such that s →w o, o o′ (integrity vulnerability path or
simply vulnerability path) and s 6→w o′. An integrity vulnerability, shows that subject
s (the violator) can indirectly write into o′ using the path flow from o to o′, though
s is not allowed to write directly into o′. We represent integrity vulnerabilities using
triples of the form (s, o, o′). For example, the ACS depicted in Figure 1 has the integrity
vulnerability (s1, o3, o6) since o3 o6 and s1 →w o3 but s1 6→w o6. In total, there are
12 integrity vulnerabilities:
(s1, o3, o6), (s1, o3, o7), (s1, o4, o6), (s1, o4, o7), (s1, o5, o6), (s1, o5, o7), (s2, o3, o6),
(s2, o3, o7), (s2, o4, o6), (s2, o4, o7), (s2, o5, o6), (s2, o5, o7).

When an ACS has either a confidentiality or an integrity vulnerability, we simply
say that C has a vulnerability, whose length is that of its underlying vulnerability path.
Thus, for the ACS depicted in Figure 1, there are 15 + 12 = 27 vulnerabilities.

Data Leakages. A vulnerability in an access control system does not necessarily imply
that a data leakage (confidentiality or integrity violation) occurs. Rather, a leakage can
potentially happen unless it is detected and blocked beforehand, using for example a
monitor. Before we define this notion formally, we first develop the necessary formal-
ism.

A run of an ACS C is any finite sequence π = (s1, op1, o1) . . . (sn, opn, on) of
triples (or actions) from the set S × {read ,write} × O such that for every i ∈ [1, n]
one of the following two cases holds:

(Read) opi = read , and oi →r si;
(Write) opi = write , and si →w oi.

A run π represents a sequence of allowed read and write operations executed by subjects
on objects. More specifically, at step i ∈ [n] subject si accomplishes the operation opi
on object oi. Furthermore, si has the right to access oi in the opi mode. A run π has
a flow from an object ô1 to a subject ŝk provided there is a flow path ô1 →r ŝ1 →w

ô2 . . . ôk and ôk →r ŝk such that (ŝ1, read , ô1)(ŝ1,write, ô2) . . . (ŝk, read , ôk) is a
sub-sequence of π. Similarly, we can define flows from subjects to objects, objects to
objects, and subjects to subjects.

Confidentiality Violation: A run π of an ACS C has a confidentiality violation, provided
there is a confidentiality vulnerability path from an object o to a subject s and π has a
flow from o to s. An ACS C has a confidentiality violation if there is a run of C with a
confidentiality violation.

Thus, for example, in the ACS depicted in Figure 1, a confidentiality violation would
occur if there was a sequence (s1, read , o1)(s1,write, o3)(s3, read , o3) which was a
sub-sequence of π.

Integrity Violation: A run π of an ACS C has an integrity violation, provided there is an
integrity vulnerability path from a subject s to an object o and π has a flow from s to o.
An ACS C has an integrity violation if there is a run of C with an integrity violation.

As above, in the ACS depicted in Figure 1, a integrity violation would occur, for
example, if there was a sequence (s2,write, o4)(s3, read , o4)(s3,write, o7) which was
a sub-sequence of π.

An ACS has a data leakage if it has either a confidentiality or an integrity violation.
From the definitions above it is straightforward to see that the following property holds.

Proposition 1. An access control system is data leakage free if and only if it is vulner-
ability free.

The direct consequence of the proposition above suggests that a vulnerability free
access control system is data leakage free by design, hence it does not require a monitor
to prevent data leakages.

Fundamental Theorem. We now prove a simple and fundamental property of ACS that
constitutes one of the building blocks for our approaches for checking and eliminating
vulnerabilities/data leakages as shown later in the paper.

Theorem 1. Let C be an access control system. C has a vulnerability only if C has a
vulnerability of length one. In particular, let ρ = o0 →r s0 →w o1 . . . sn−1 →w on
be vulnerability path of minimal length. Then, if ρ is a confidentiality (resp., integrity)
vulnerability then o0 →r s0 →w o1 (resp., o0 →r s0 →w on) is a confidentiality
(resp., integrity) vulnerability of length one.

Proof. The proof is by contradiction. Assume that n is greater than one by hypothesis.
We first consider the case of confidentiality vulnerability. Let s be the violator. Since
ρ is of minimal length, all objects along ρ except o0 can be directly read by s (i.e.,
oi →r s for every i ∈ [1, n]), otherwise there is an confidentiality vulnerability of
smaller length. Thus, o0 →r s0 →w o1 is a confidentiality vulnerability of length one,
as s can read from o1 but cannot read from o0. A contradiction.

We give a similar proof for integrity vulnerabilities. Again, since ρ is of minimal
length, all objects along ρ, except o0, can be directly written by s0, i.e., s0 →w oi for
every i ∈ {1, . . . , n}. But, this entails that o0 →r s0 →w on is an integrity vulnera-
bility of length one (as s can write into o0 but cannot directly write into on). Again, a
contradiction.

We now present two alternative strategies for preventing data flows, which fit dif-
ferent environments.

3 Access Control Systems Data Leakage Free by Design

When a monitor is not possible or even doable the only solution to get an access con-
trol that is free of data leakages is that of having the ACS free of vulnerabilities (see
Proposition 1). In this section, we propose an automatic approach that turns any ACS
into one free of vulnerabilities by revoking certain rights.

This can be naively achieved by removing all read and write permissions. However,
this would make the whole approach useless. Instead, it is desirable to minimize the
changes to the original access control matrix so as not to disturb the users’ ability to

perform their job functions, unless it is absolutely needed. Furthermore, the removal
of these permissions should take into account the fact that some of them may belong
to trusted users (i.e. subjects), such as system administrators, and therefore we want to
prevent the removal of these permissions.

We show that this problem is NP-complete (see Section 3.1). Therefore, an efficient
solution is unlikely to exist (unless P=NP). To circumvent this computational difficulty,
we propose compact encodings of this optimization problem into integer linear pro-
gramming (ILP) by exploiting Theorem 1 (see Section 3.2 and 3.3). The main goal is
that of leveraging efficient solvers for ILP, which nowadays exist. We show that this
approach is promising in practice in Section 5.

Maximal Data Flow Problem (MDFP). Let C = (S,O,→r,→w) be an access control
system, and T = (→t

r,→t
w) be the sets of trusted permissions where →t

r⊆→r and
→t
w⊆→w. A pair Sol = (→sol

r ,→sol
w) is a feasible solution of C and T , if→t

r⊆→sol
r ⊆

→r,→t
w⊆→sol

w ⊆→w and C′ = (S,O,→sol
r ,→sol

w) does not have any threat. The size
of a feasible solution Sol , denoted size(Sol), is the value | →sol

r | + | →sol
w |. The

MDFP is to maximize size(Sol).

3.1 MDFP is NP-complete

Here we show that the decision problem associated to MDFP is NP-complete. Given an
instance I = (C, T) of MDFP and a positive integerK, the decision problem associated
to MDFP, called D-MDFP, asks if there is a feasible solution of I of size greater or equal
to K.

Theorem 2. D-MDFP is NP-complete.

See Appendix 7.2 for the proof.

3.2 ILP Formulation

Here we define a reduction from MDFP to integer linear programming (ILP). In the
rest of this section, we denote by I = (C, T) to be an instance of MDFP, where C =
(S,O,→r,→w) and T = (→t

r,→t
w).

The set of variables V of the ILP formulation is:

V = {ro,s | o ∈ O ∧ s ∈ S ∧ o→r s} ∪ {ws,o | s ∈ S ∧ o ∈ O ∧ o→r s}

The domain of the variables in V is {0, 1}, and the intended meaning of these vari-
ables is the following. Let ηI : V → {0, 1} be an assignment of the variables in V
corresponding to an optimal solution of the ILP formulation. Then, a solution for I is
obtained by removing all permissions corresponding to the variables assigned to 0 by
ηI . Formally, SolηI = (→sol

r ,→sol
w) is a solution for I , where

→sol
r = { (o, s) | o ∈ O ∧ s ∈ S ∧ o→r s ∧ ηI(ro,s) = 1 }

→sol
w = { (s, o) | s ∈ S ∧ o ∈ O ∧ s→w o ∧ ηI(ws,o) = 1 }.

max
∑
v∈V

v

subject to

ro,ŝ + wŝ,ô + rô,s − ro,s≤ 2,∀ o→r ŝ→w ô→r s, o→r s

ro,ŝ + wŝ,ô + rô,s ≤ 2,∀ o→r ŝ→w ô→r s, o 6→r s

ws,ô + rô,ŝ + wŝ,o − ws,o≤ 2,∀ s→w ô→r ŝ→w o, s→w o

ws,ô + rô,ŝ + wŝ,o ≤ 2,∀ s→w ô→r ŝ→w o, s 6→w o

ro,s = 1, ∀ o→t
r s; ws,o = 1, ∀ s→t

w o; v ∈ {0, 1}, ∀v ∈ V

Fig. 2. ILP formulation of MDFP.

The main idea on how we define the ILP encoding, hence its correctness, derives
straightforwardly from Theorem 1: we impose that every flow path of length one, say
o →r ŝ →w o′, if these permissions remain in the resulting access control system
C′ = (S,O,→sol

r ,→sol
w), then it must be the case that for every subject s ∈ S if s can

read from o′ in C′, s must also be able to read from o in C′ (CONFIDENTIALITY), and
if s that can write into o in C′, s must be also able to write into o′ in C′ (INTEGRITY).
Formally, the linear equations of our ILP formulation is the minimal set containing the
following.
Confidentiality Constraints: For every sequence of the form o →r ŝ →w ô →r s, we
add the constraint: ro,ŝ + wŝ,ô + rô,s − G ≤ 2 where G is ro,s in case o →r s,
otherwise G = 0. For example, for the sequence o1 →r s1 →w o3 →r s2, in the ACS
depicted in Figure 1(a), we have ro1,s1 + ws1,o3 + ro3,s2 − 0 ≤ 2.
Integrity Constraints: For every sequence of the form s→w o→r ŝ→w ô, we add the
constraint: ws,o + ro,ŝ + wŝ,ô −G ≤ 2 where G is ws,ô in case s →w ô, otherwise
G = 0. As above, for the sequence s2 →w o4 →r s3 →w o7, in the ACS depicted in
Figure 1(a), we add the constraint ws2,o4 + ro4,s3 + ws3,o7 − 0 ≤ 2

Trusted Read Constraints: For every o→t
r s, we have the constraint: ro,s = 1.

Trusted Write Constraints: For every s→t
w o, we have the constraint: ws,o = 1.

It is easy to see that any variable assignment η that obeys all linear constraints
defined above leads to a feasible solution of I .
Objective Function: Now, to maximize the number of remaining permissions (or equiv-
alently, minimize the number of removed permissions) we define the objective func-
tion of the ILP formulation as the sum of all variables in V . Compactly, our ILP-
FORMULATION(C, T) is as shown in Figure 2.

We now formally state the correctness of our ILP approach, which is entailed from
the fact that we remove the minimal number of permissions from C resulting in a new
ACS that does not have any threat of length one, hence from Theorem 1 does not have
any threat at all.

Theorem 3. For any instance I of MDFP, if ηI is an optimal solution of ILP -
FORMULATION(I) then SolηI is an optimal solution of I .

We note that while the ILP formulation gives the optimal solution, solving two
subproblems (one for confidentiality followed by the one for integrity each with only
the relevant constraints) does not give an optimal solution.

For example, for the ACS depicted in Figure 1(a), if we only eliminate the 15 con-
fidentiality vulnerabilities, the optimal solution is to revoke 5 permissions (o1 →r s1,
o2 →r s1, o1 →r s2, o2 →r s2, and o6 →r s5). This eliminates all of the confidential-
ity, while all of the original integrity vulnerabilities still exist. No new vulnerabilities
are added. Now, if the integrity vulnerabilities are to be eliminated, the optimal solution
is to revoke 4 permissions (s3 →w o6, s3 →w o7, s4 →w o6, s4 →w o7). Thus, the
total number of permissions revoked is 9. However, if both confidentiality and integrity
vulnerabilities are eliminated together (using the composite ILP in Figure 2), the op-
timal solution is to simply revoke 6 permissions (o3 →r s3, o4 →r s3, o5 →r s3,
o3 →r s4, o4 →r s4, o5 →r s4), which is clearly lower than 9.

3.3 Compact ILP Formulation

We now present an improved encoding that extends the ILP formulation described in
Section 3.2 by merging subjects and objects that have the same permissions. This allows
us to get a much reduced encoding, in terms of variables, with better performances in
practice (see Section 5).
Equivalent Subjects: For an instance I = (C, T) of MDFP with C = (S,O,→r,→w)

and T = (→t
r,→t

w), two subjects are equivalent if they have the same permissions.
Formally, for a subject s ∈ S, let readI(s) (respectively, read tI(s)) denote the set
of all objects that can be read (respectively, trust read) by s in C, i.e., readI(s) =
{o ∈ O | o →r s} (respectively, read tI(s) = {o ∈ O | o →t

r s}). Similarly, we
define writeI(s) = {o ∈ O | s →w o} and writetI(s) = {o ∈ O | s →t

w o}.
Then, two subjects s1 and s2 are equivalent, denoted s1 ≈ s2, if readI(s1)readI(s2),
read tI(s1) = read tI(s2), writeI(s1) = writeI(s2), and writetI(s1) = writetI(s2).

For every s ∈ S, [s] is the equivalence class of s w.r.t.≈. Moreover, S≈ denotes the
quotient set of S by ≈. Similarly, we can define the same notion of equivalent objects,
with [o] denoting the the equivalence class of o ∈ O, and O≈ denoting the quotient set
of O by ≈.

Given a read relation→r⊆ O×S and two subjects s1, s2 ∈ S,→r [s1/s2] is a new
read relation obtained from→r by assigning to s2 the same permissions that s1 has in
→r:→r [s1/s2] = (→r \ (O × {s2})) ∪ {(o, s2) | o ∈ O ∧ o→r s1}.

Similarly,→w [s1/s2] = (→w \ ({s2}×O))∪ {(s2, o) | o ∈ O ∧ s1 →w o}.
A similar substitution can be defined for objects.

The following lemma states that for any given optimal solution of I it is always
possible to derive a new optimal solution in which two equivalent subjects have the
same permissions.

Lemma 1. Let I = (C, T) be an instance of the MDFP problem, s1 and s2 be two
equivalent subjects of I , and Sol ′ = (→sol

r ,→sol
w) be a optimal solution of I . Then,

Sol ′′ = (→sol
r [s1/s2],→sol

w [s1/s2]) is also an optimal solution of I .

See Appendix 7.1 for the proof.
The following property is a direct consequence of Lemma 1.

Corollary 1. Let I = (C, T) with C = (S,O,→r,→w) be an instance of the MDFP
problem that admits a solution. Then, there exists a solution Sol = (→sol

r ,→sol
w) of

I such that for every pair of equivalent subjects s1, s2 ∈ S, s1 and s2 have the same
permissions in C = (S,O,→sol

r ,→sol
w).

Lemma 1 and Corollary 1 also hold for equivalent objects. Proofs are similar to
those provided above and hence we omit them here.
Compact ILP formulation. Corollary 1 suggests a more compact encoding of the MDFP
into ILP. From C, we define a new ACS C≈ by collapsing all subjects and objects
into their equivalence classes defined by ≈, and by merging permissions consequently
(edges of GC). Formally, C≈ has S≈ as set of subjects and O≈ as set of objects, where
the read and write permission sets are defined as follows: →≈r = { ([o], [s]) | o ∈
O ∧ s ∈ S ∧ o →r s },→≈w= { ([o], [s]) | s ∈ S ∧ o ∈ O ∧ s →w o }.
Similarly, we define the trusted permissions of C≈ as T≈ = (→t

r
≈
,→t

w
≈
) where

→t
r
≈

= { ([o], [s]) | o ∈ O ∧ s ∈ S ∧ o →t
r s },→t

w
≈

= { ([o], [s]) |
s ∈ S ∧ o ∈ O ∧ s→t

w o }.
We now define a new ILP encoding, COMPACT-ILP-FORMULATION(I), for MFDP

on the instance (C≈, T≈), which is similar to that of Figure 2 with the difference that
now edges may have a weight greater than one; reflecting the number of edges of C it
represents in C≈. More specifically, each edge from a node x1 to x2 in GC≈ represents
all edges from all nodes in [x1] to all nodes in [x2], i.e., its weight is |[x1]| · |[x2]|.
Figure 1(b) shows the compact representation of Figure 1(a), where the edges have the
appropriate weights.

Figure 3 shows COMPACT-ILP-FORMULATION(I) over the set of variables V≈.
The set of linear constraints is the same as those in Figure 2 with the difference that
now they are defined over C≈ rather than C. Instead, the objective function is similar to
that of Figure 2, but now captures the new weighting attributed to edges in GC≈ .

Let η≈I : V → {0, 1} be a solution to the ILP instance of Figure 3. Define Ŝolη≈I =

(→̂r
sol
, →̂w

sol
) where →̂r

sol
={ (o, s) ∈ O× S | o→r s ∧ η≈I (r[o],[s]) ≥ 1 } and

→̂w
sol

={ (s, o) ∈ S ×O | s→w o ∧ η≈I (w[s],[o]) ≥ 1 }.
We now prove that Solη≈I is an optimal solution of I .

Theorem 4. For any instance I of MDFP, if η≈I is an optimal solution of COMPACT-
ILP-FORMULATION(I) then Ŝolη≈I is an optimal solution of I . Furthermore, if I ad-
mits a solution then η≈I also exists.

See Appendix 7.3 for the proof.

4 Preventing Data Leakages with Monitors

A data-leakage monitor or simply monitor of an access control system C is a comput-
ing system that by observing the behaviors on C (i.e., the sequence of read and write
operations) detects and prevents data leakages (both confidentiality and integrity viola-
tions) by blocking subjects’ operations. In this section, we present a monitor based on
a tainting approach. We first define monitors as language acceptors of runs of C that are

max
∑

[o]→≈r [s]

(
| [o] | · | [s] | · r[o],[s]

)
+

∑
[s]→≈w [o]

(
| [s] | · | [o] | · w[s],[o]

)
subject to

r[o],[ŝ] + w[ŝ],[ô] + r[ô],[s] − r[o],[s] ≤ 2, ∀[o]→≈r [ŝ]→≈w [ô]→≈r [s] ∧ [o]→r [s]

r[o],[ŝ] + w[ŝ],[ô] + r[ô],[s] ≤ 2, ∀[o]→≈r [ŝ]→≈w [ô]→≈r [s] ∧ [o] 6→r [s]

w[s],[ô] + r[ô],[ŝ] + w[ŝ],[o] − w[s],[o] ≤ 2, ∀[s]→≈w [ô]→≈r [ŝ]→≈w [o] ∧ [s]→w [o]

w[s],[ô] + r[ô],[ŝ] + w[ŝ],[o] ≤ 2, ∀[s]→≈w [ô]→≈r [ŝ]→≈w [o] ∧ [s] 6→w [o]

r[o],[s] = 1, ∀[o]→t
r [s]; w[s],[o] = 1, ∀[s]→t

w [o]; v ∈ {0, 1}, ∀v ∈ V≈

Fig. 3. ILP formulation of MDFP based on equivalence classes.

data leakage free. We then present a monitor based on tainting and then conclude with
an optimized version of this monitor that uses only 2-step tainting, leading to better
empirical performances.

Monitors. Let C = (S,O,→r,→w) be an ACS, Σ = S × {read ,write} × O be the
set of all possible actions on C, and R = {accept , reject}. A monitorM of C is a triple
(Q, qst , δ) where Q is a set of states, qst ∈ Q is the start state, and δ : (Q×R×Σ)→
(Q×R) is a (deterministic) transition function.

A configuration of M is a pair (q, h) where q ∈ Q and h ∈ R. For a word w =
σ1 . . . σm ∈ Σ∗ with actions σi ∈ Σ for i ∈ [1,m], a run ofM on w is a sequence
of m + 1 configurations (q0, h0), . . . (qm, hm) where q0 is the start state qst , h0 =
accept , and for every i ∈ [1,m] the following holds: hi−1 = accept and (qi, hi) =
δ(qi−1, hi−1, σi), or hi−1 = hi = reject and qi = qi−1.

A word w (run of C) is accepted by M if hm = accept . The language of M,
denoted L(M), is the set of all words w ∈ Σ∗ that are accepted byM.

A monitor M is maximal data leakage preserving (MDLP, for short) if L(M) is
the set of all words in Σ∗ that are confidentiality and integrity free. For any given ACS
C, it is easy to show that an MDLP monitor can be built. This can be proved by showing
that L(M) is a regular language: we can easily express the properties of the words in
L(M) with a formula ϕ of monadic second order logic (MSO) on words and then use
an automatic procedure to convert ϕ into a finite state automaton [14]. Although, this is
a convenient way of building monitors for regular properties, it can lead to automata of
exponential size in the number of objects and subjects. Hence, it is not practical for real
access control systems.

Building Maximal Data-Leakage Preserving Monitors. A monitor based on tainting
can be seen as a dynamic information flow tracking system that is used to detect data
flows (see for example [17, 21, 22]).

An MDLP monitor Mtaint based on tainting associates each subject and object
with a subset of subjects and objects (tainting sets).Mtaint starts in a state where each
subject and object is tainted with itself. Then,Mtaint progressively scans the sequence
of actions on C. For each action, say from an element x1 to an element x2, Mtaint

updates its state by propagating the tainting from x1 to x2. These tainting sets can be
seen as a way to represent the endpoints of all flows: if x2 is tainted by x1, then there is
a flow from x1 to x2. Thus, by using these flows and the definitions of confidentiality
and integrity violations,Mtaint detects data leakages.

More formally, an Mtaint state is a map taint : (S ∪ O) → 2(S∪O). A state
taint is a start state if taint(x) = {x}, for every x ∈ (S ∪ O). The transition relation
δ of Mtaint is defined as follows. For any two states taint , taint ′, h, h′ ∈ R and
σ = (s, op, o) ∈ Σ, δ(taint , h, σ) = (taint ′, h′) if either h = h′ = reject and
taint ′ = taint , or h = accept and the following holds:

(Data Leakage) h′ = reject iff either (Confidentiality Violation) op = read and ∃ô ∈
taint(o) such that ô 6→r s, or (Integrity Violation) op = write and ∃ŝ ∈ taint(s)
such that ŝ 6→w o.

(Taint Propagation) either (Read Propagation) op = read , taint ′(s) = (taint(s) ∪
taint(o)), and for every x ∈ (S ∪ O) \ {s}, taint ′(s) = taint(s); or (Write
Propagation) op = write , taint ′(o) = (taint(o) ∪ taint(s)), and for every x ∈
(S ∪O) \ {o}, taint ′(x) = taint(s).

Theorem 5. Mtaint is an MDLP monitor.

MDLP monitor based on 2-step tainting: The tainting sets ofMtaint progressively grow
as more flows are discovered. In the limit each tainting set potentially includes all sub-
jects and objects of C. Since for each action the time for checking confidentiality and
integrity violations is proportional to the size of the tainting sets of the object and sub-
ject involved in that action, it is desirable to reduce the sizes of these sets to get better
performances. We achieve this, by defining a new tainting monitorM2

taint that keeps
track only of the flows that across at most two adjacent edges in GC . The correctness of
our construction is justified by the correctness ofMtaint and Theorem 1.

The 2-step tainting monitorM2
taint is defined as follows. A state ofM2

taint is (as
for Mtaint) a map taint : (S ∪ O) → 2(S∪O). Now, a state taint is a start state if
taint(x) = ∅, for every x ∈ (S ∪O).

The transition relation δ2 of M2
taint is defined to guarantee that after reading a

violation free run π of C:

– for every s ∈ S, x ∈ taint(s) iff either (1) x ∈ O, (o, s) is an edge ofGC , and there
is a direct flow from x to s in π, or (2) x ∈ S, for some subject ô ∈ O, (x, ô, s) is a
path in GC , and there is a 2-step flow from x to s in π;

– for every o ∈ O, x ∈ taint(o) iff either (1) x ∈ S, (s, o) is an edge ofGC , and there
is a direct flow from x to o in π, or (2) x ∈ O, for some subject ŝ ∈ S, (x, ŝ, o) is a
path in GC , and there is a 2-step flow from x to o in π.

Formally, for any two states taint , taint ′, h, h′ ∈ R and σ = (s, op, o) ∈ Σ, δ2(taint ,
h, σ) = (taint ′, h′) if either h = h′ = reject and taint ′ = taint , or h = accept and
the following holds:

(Data Leakage) same as forMtaint ;

Table 2. Sample Sequence of Actions and Monitor’s Behavior

User’s Operation Actions Taken
1 s1, r, o1 taint(s1)={o1}
2 s1, w, o3 taint(o3)={s1, o1} Monitor will block o3 →r s3 o3 →r s4 to remove the confidentiality vulnera-

bilities
3 s1, w, o4 taint(o4)={s1, o1} Monitor will block o4 →r s3 o4 →r s4 to remove the confidentiality vulnera-

bilities
4 s2, w, o4 taint(o4)={s1, o1, s2}
5 s4, r, o4 taint(s4)={s1, s2, o4} Monitor will block s4 →w o6 and s4 →w o7 to remove the integrity

vulnerability
6 s3, r, o3 Access denied
7 s4, w, o7 Access denied

(Taint Propagation) either (Read Propagation) op = read , taint ′(s) = taint(s) ∪
{o} ∪ (taint(o) ∩ S), and for every x ∈ (S ∪ O) \ {s}, taint ′(s) = taint(s); or
(Write Propagation) op = write , taint ′(o) = taint(o) ∪ {s} ∪ (taint(s) ∩ O),
and for every x ∈ (S ∪O) \ {o}, taint ′(x) = taint(s).

From the definition ofM2
taint it is simple to show (by induction) that the following

property holds.

Theorem 6. M2
taint is an MDLP monitor. Furthermore, for every C run π ∈ Σ∗, if

(taint0, h0), . . . (taintm, hm) and (taint ′0, h
′
0), . . . (taint

′
m, h

′
m) are, respectively, the

run ofMtaint andM2
taint on π, then taint ′i(x) ⊆ taint i(x), for every i ∈ [1,m] and

x ∈ (S ∪O).

Therefore, in practice we expect that for large access control systems M2
taint is

faster thanMtaint as each tainting sets ofM2
taint will be local and hence much smaller

in size than those ofMtaint . To show the behavior of the monitor the based approach,
consider again the access control system shown in Table 1, along with the potential se-
quence of operations shown in Table 2. Table 2 shows the taints and monitor’s action for
each operation in the sequence. Note that the monitor blocks a total of six permissions
(2 each on operations (2), (3), and (5)).

5 Experimental Evaluation

We now present the experimental evaluation which demonstrates the performance and
restrictiveness of the two proposed approaches. We utilize four real life access control
data sets with users and permissions – namely, (1) fire1, (2) fire2, (3) domino, (4) hc
[12]. Note that these data sets encode a simple access control matrix denoting the ability
of a subject to access an object (in any access mode). Thus, these data sets do not have
the information regarding which particular permission on the object is granted to the
subject. Therefore, we assume for all of the datasets that each assignment represents
both a read and a write permission on a distinct object.

For the data leakage free by design approach, we use the reduced access control
matrices obtained by collapsing equivalent subjects and objects, as discussed in Section
3. The number of subjects and objects in the original and reduced matrices are given
in Table 3. Note that collapsing subjects and objects significantly reduces the sizes of

the datasets (on average the dataset is reduced by 93.99%). Here, by size, we mean
the product of the number of subjects and objects. Since the number of constraints is
linearly proportional to the number of permissions which depends on the number of
subjects and objects, a reduction in their size leads to a smaller ILP problem.

We implement the solution approaches described above. For the data leakage free
by design approach (Section 3), we create the appropriate ILP model as per Figure 3.
The ILP model is then executed using IBM CPLEX (v 12.5.1) running through callable
libraries within the code. For the monitor based approach, the M2

taint monitor is im-
plemented. The algorithms are implemented in C and run on a Windows machine with
16 GB of RAM and Core i7 2.93 GHz processor.

Table 3. Dataset Details

Original Size Reduced Size Percentage
Dataset Name Subjects Objects Subjects Objects Reduction

1 fire1 365 709 90 87 96.97 %
2 fire2 325 590 11 11 99.94 %
3 domino 79 231 23 38 95.21 %
4 hc 46 46 18 19 83.84 %

Table 4 presents the experimental results for the Data Leakage Free by Design ap-
proach. The column “Orig. CPLEX Time”, shows the time required to run the ILP
formulation given in Figure 2, while the column “Red. CPLEX Time” gives the time
required to run the compact ILP formulation given in Figure 3. As can be seen, the
effect of collapsing the subjects and objects is enormous. fire1 and fire2 could not be
run (CPLEX gave an out of memory error) for the original access control matrix, while
the time required for hc and domino was several orders of magnitude more. Since we
use the reduced datasets, as discussed above, the column “Threats” reflects the number
of threats in the reduced datasets to be eliminated. The next three columns depict the
amount of permission revocation to achieve a data leakage free access matrix. Note that,
here we list the number of permissions revoked in the original access control matrix. On
average, 25.28 % of the permissions need to be revoked to get an access control system
without any data leakages.

When we have a monitor, as discussed in Section 4, revocations can occur on the fly.
Therefore, to test the relative performance of the monitor based approach, we have ran-
domly generated a set of read/write operations that occur in the order they are generated.
The monitor based approach is run and the number of permissions revoked is counted.
Since the number of flows can increase as more operations occur, and therefore lead to
more revocations, we actually count the revocations for a varying number of operations.

Table 4. Results for Data Leakage Free Access Matrix

Data Orig. CPLEX Red. CPLEX # Perm. # Perm. %
Set Time (s) Time (s) Threats Init. Assn. Revoked Revoked
1 - 2582 34240 63902 14586 22.83 %
2 - 0.225 514 72856 12014 16.49 %
3 8608.15 6.01 3292 1460 421 28.84 %
4 1262.82 0.27 1770 2972 980 32.97 %

Table 5. Results for Monitor based approach

Data # Perm. Number Permissions Blocked % Finally
Set Init. Assn. 10% 50% 100% 1000% 5000% 10000% Blocked
1 63902 0 140 532 14221 24031 26378 41.28 %
2 72856 0 13 26 3912 8129 9025 12.39 %
3 1460 0 36 41 130 283 364 24.93 %
4 2972 0 0 0 557 1123 1259 42.36 %

Specifically, for each dataset, we generate on average 100 operations for every subject
(i.e., we generate 100 ∗ |S| number of random operations). Thus, for hc, since there
are 46 subjects, we generate 4600 random operations, where as for fire1 which has 365
subjects, we generate 36500 random operations. Now, we count the number of permis-
sions revoked if only 10% ∗ |S| operations are carried out (and similarly for 50% ∗ |S|,
100% ∗ |S|, 1000% ∗ |S|, 5000% ∗ |S|, and finally 10000% ∗ |S|). Table 5 gives the
results. Again, we list the number of permissions revoked in the original access control
matrix. As we can see, the number of permissions revoked is steadily increasing, and in
the case of fire1 and hc the final number of permissions revoked is already larger than
the permissions revoked in the data leakage free method. Also, note that in the current
set of experiments, we have set a window size of 1000 – this means that if the gap be-
tween a subject reading an object and then writing to another object is more than 1000
operations, then we do not consider a data flow to have occurred (typically a malicious
software would read and then write in a short duration of time) – clearly, the choice
of 1000 is arbitrary, and in fact, could be entirely removed, to ensure no data leakages.
In this case, the number of permission revocations would be even larger than what is
reported, thus demonstrating the benefit of the data leakage free approach when a large
number of operations are likely to be carried out.

6 Related Work

The importance of preventing inappropriate leakage of data, often called the confine-
ment problem in computer systems, first identified by Lampson in early 70’s [20], is
defined as the problem of assuring the ability to limit the amount of damage that can be
done by malicious or malfunctioning software. The need for a confinement mechanism
first became apparent when researchers noted an important inherent limitation of DAC
– the Trojan Horse Attack, and with the introduction of the Bell and LaPadula model
and the MAC policy. Although MAC compliant systems prevent inappropriate leakage
of data, these systems are limited to multi-level security.

While MAC is not susceptible to Trojan Horse attacks, many solutions proposed to
prevent any such data leakage exploit employing labels or type based access control.
Boebert et al. [3], Badger et al. [1] and Boebert and Kain [4] are some of the studies
that address confidentiality violating data flows. Mao et al. [21] propose a label based
MAC over a DAC system. The basic idea of their approach is to associate read and write
labels to objects and subjects. These object labels are updated dynamically to include
the subject’s label when the subject reads or writes to that object. Moreover, the object
label is a monotonically increasing set of items, with the cardinality in the order of the
number of users read (wrote) the object. Their approach detects integrity violating data

flows. Zimmerman et al. [32] propose a rule based approach that prevents any integrity
violating data flow. Jaume et al. [17] propose a dynamic label updating procedure that
detects if there is any confidentiality violating data flow.

Information Flow Control (IFC) models [10, 18] are closely related to our problem.
IFC model is a fine-grained information flow model which is also based on tainting and
utilizes labels for each piece of data that is required to be protected using the lattice
model for information flow security by [9]. The models can be at software or OS level
depending on the granularity of the control and centralized or decentralized depend-
ing on the authority to modify labels [24]. However, these models do not consider the
permission assignments, which makes them different than our model.

Dynamic taint analysis is also related to our problem. Haldar et al. [16] propose a
taint based approach for programs in Java, and Lam et al. [19] propose a dynamic taint
based analysis on C. Enck et al. [11] provide a taint based approach to track third party
Android applications. Cheng et al. [6], Clause et al. [7] and Zhu et al. [31] propose
software level dynamic tainting.

Sze et al. [26] study the problem of self-revocation, where a revocation in the per-
mission assignments of any subject on an object while editing it might cause confi-
dentiality and integrity issues. They also study the problem of integrity violation by
investigating the source code and data origin of suspected malware and prevent any
process that is influenced from modifying important system resources [27]. Finally, the
work by Gong and Qian [15] focuses on detecting the cases where confidentiality and
integrity flows occur due to interoperation of distinct access control systems. They study
the complexity to detect such violations.

7 Conclusions and Future Work
In this paper, we have proposed a methodology for identifying and eliminating unautho-
rized data flows in DAC, that occur due to Trojan Horse attacks. Our key contribution
is to show that a transitive closure is not required to eliminate such flows. We then pro-
pose two alternative solutions that fit different situational needs. We have validated the
performance and restrictiveness of the proposed approaches with real data sets. In the
future, we plan to propose an auditing based approach which eliminates unauthorized
flows only if the flows get realized. This might be useful to identify the data leakage
channels that are actually utilized. We also plan to extend our approach to identify and
prevent the unauthorized flows in RBAC, which is also prone to Trojan Horse attacks.
Analysis on RBAC is more challenging since there is an additional layer of complexity
(roles) that must be taken into account. The preventive action decisions must overcome
the dilemma of whether to revoke the role from the user or revoke the permission from
the role.

References

1. Badger, L., Sterne, D.F., Sherman, D.L., Walker, K.M., Haghighat, S.A.: Practical domain
and type enforcement for unix. In: IEEE S&P. pp. 66–77 (1995)

2. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations. Tech. rep.,
DTIC Document (1973)

3. Boebert, W., Young, W., Kaln, R., Hansohn, S.: Secure ada target: : Issues, system design,
and verification. In: IEEE S&P (1985)

4. Boebert, W.E., Kain, R.Y.: A further note on the confinement problem. In: Security Technol-
ogy. pp. 198–202. IEEE (1996)

5. Brucker, A.D., Petritsch, H.: Extending access control models with break-glass. In: SAC-
MAT. pp. 197–206. ACM (2009)

6. Cheng, W., Zhao, Q., Yu, B., Hiroshige, S.: Tainttrace: Efficient flow tracing with dynamic
binary rewriting. In: ISCC. pp. 749–754. IEEE (2006)

7. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework. In: ISSTA.
pp. 196–206. ACM (2007)

8. Crampton, J.: Cryptographic enforcement of role-based access control. In: Degano, P., Etalle,
S., Guttman, J. (eds.) Formal Aspects of Security and Trust, Lecture Notes in Computer
Science, vol. 6561, pp. 191–205 (2011)

9. Denning, D.E.: A lattice model of secure information flow. Communications of the ACM
19(5), 236–243 (1976)

10. Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler, E., Mazieres,
D., Kaashoek, F., Morris, R.: Labels and event processes in the asbestos operating system.
In: SOSP. vol. 5, pp. 17–30 (2005)

11. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.: Taintdroid:
An information-flow tracking system for realtime privacy monitoring on smartphones. In:
OSDI. vol. 10, pp. 255–270 (2010)

12. Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast exact and
heuristic methods for role minimization problems. SACMAT pp. 1–10 (2008)

13. Ferrara, A., Fuchsbauer, G., Warinschi, B.: Cryptographically enforced rbac. In: CSF. pp.
115–129 (June 2013)

14. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Computer Sci-
ence. An EATCS Series). Springer-Verlag New York, Inc. (2006)

15. Gong, L., Qian, X.: The complexity and composability of secure interoperation. In: Research
in Security and Privacy, 1994. Proceedings., 1994 IEEE Computer Society Symposium on.
pp. 190–200. IEEE (1994)

16. Haldar, V., Chandra, D., Franz, M.: Dynamic taint propagation for java. In: ACSAC. pp.
303–311 (2005)

17. Jaume, M., Tong, V.V.T., Mé, L.: Flow based interpretation of access control: Detection of
illegal information flows. In: ICISS, pp. 72–86 (2011)

18. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris, R.: In-
formation flow control for standard os abstractions. In: ACM SIGOPS Operating Systems
Review. vol. 41, pp. 321–334. ACM (2007)

19. Lam, L.C., Chiueh, T.: A general dynamic information flow tracking framework for security
applications. In: ACSAC. pp. 463–472 (2006)

20. Lampson, B.W.: A note on the confinement problem. Communications of the ACM 16(10),
613–615 (1973)

21. Mao, Z., Li, N., Chen, H., Jiang, X.: Trojan horse resistant discretionary access control. In:
SACMAT. pp. 237–246. ACM (2009)

22. Mao, Z., Li, N., Chen, H., Jiang, X.: Combining discretionary policy with mandatory infor-
mation flow in operating systems. ACM TISSEC 14(3), 24:1–24:27 (Nov 2011)

23. Marinovic, S., Craven, R., Ma, J., Dulay, N.: Rumpole: A flexible break-glass access control
model. In: SACMAT. pp. 73–82. ACM (2011)

24. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In: SIGOPS
Operating Systems Review. vol. 31, pp. 129–142. ACM (1997)

25. Petritsch, H.: Break-Glass: Handling Exceptional Situations in Access Control. Springer
Vieweg (2014)

26. Sze, W.K., Mital, B., Sekar, R.: Towards more usable information flow policies for contem-
porary operating systems. In: SACMAT (2014)

27. Sze, W.K., Sekar, R.: Provenance-based integrity protection for windows. In: ACSAC 2015.
pp. 211–220. ACM, New York, NY, USA (2015)

28. Yannakakis, M.: Node- and edge-deletion np-complete problems. In: Lipton, R.J., Burkhard,
W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) STOC. pp. 253–264. ACM (1978)

29. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)
30. Zhang, D., Ramamohanrao, K., Ebringer, T.: Role engineering using graph optimisation.

SACMAT pp. 139 – 144 (2007)
31. Zhu, Y., Jung, J., Song, D., Kohno, T., Wetherall, D.: Privacy Scope: A Precise information

flow tracking system for finding application leaks. Ph.D. thesis, UC, Berkeley (2009)
32. Zimmermann, J., Mé, L., Bidan, C.: An improved reference flow control model for policy-

based intrusion detection. In: ESORICS, pp. 291–308 (2003)

Appendix

7.1 Proof of Lemma 1

Proof. Assume that S and O are the set of subjects and objects of C, respectively. Let
C′ = (S,O,→sol

r ,→sol
w) and C′′ = (S,O,→sol

r [s1/s2],→sol
w [s1/s2]).

We first prove (by contradiction) that Sol ′′ is a feasible solution of I . Assume that
C′′ has a threat. This threat is witnessed by a flow path, say ρ, that must contain s2. If ρ
does not involve s2 then ρ would also be a threat in C′, which cannot be true as Sol ′ is a
feasible solution of I . Now, observe that s2 can always be replaced by s1 along any flow
path of C′′, as s2 and s1 have the same neighbor in GC′′ . Thus, the flow path obtained
by replacing s2 with s1 along ρ, also witnesses a threat in C′. Again a contradiction.
Therefore, Sol ′′ is a feasible solution of I .

We now prove that Sol ′′ is also optimal (that is, size(Sol ′) = size(Sol ′′)) by show-
ing that s1 and s2 have the same number of incident edges in GC′ . Let n1 (respectively,
n2) be the number of incident nodes of s1 (respectively, s2) in GC′ . By contradiction,
and w.l.o.g., assume that n1 > n2. Since C′′ is obtained from C′ by removing first the
permissions of s2 and then adding to s2 the same permissions of s1, it must be the case
that size(Sol ′′) > size(Sol ′). This would entail that Sol ′ is not an optimal solution,
which is a contradiction.

7.2 Proof of Theorem 2

NP-membership. Let Sol = (→′r,→′w) such that→′r,→′w⊆ S×O. To check whether
Sol is a feasible solution of I , we need to check that (1)→t

r⊆→′r⊆→r, (2)→t
w⊆→′w⊆

→w, (3) | →′r | + | →′w | ≥ K, and more importantly, (4) that (S,O,→′r,→′w) is an
ACS that does not contain any threat. The first three properties are easy to realize in
polynomial time. Concerning the last property, we exploit Theorem 1. To check that
there is no confidentiality threat, we build all sequences of the form o0 →′r s0 →′w
o1 →′r s1 and then verify the existence of the read permission o0 →′r s1. Similarly,
for integrity threat we build all sequences such that s0 →′w o0 →′r s0 →′w o1 and then
check the existence of the write permission s0 →′w o1. Note that, all these sequences
can be built inO(O2 ·S2) and these checks can all be accomplished in polynomial time.
This shows that D-MDFP belongs to NP.
NP-hardness. For the NP-hardness proof, we provide a polynomial time reduction from
the edge deletion transitive digraph problem (ED-TD) to D-MDFP. The ED-TD asks to
remove the minimal number of edges from a given directed graph such that the resulting
graph corresponds to its transitive closure. ED-TD problem is known to be NP-complete
(see [28] Theorem 15, and [29]).

The reduction is as follows. Let G = (V,E) be a directed graph with set of nodes
V = {1, 2, . . . n} and set of edges E ⊆ (V × V). We assume that nodes of G do not
have self-loops. We now define the instance IG = (CG, TG) of D-MDFP to which G is
reduced to. Let CG = (S,O,→r,→w) and TG = (→t

r,→t
w). CG has a subject si and an

object oi, for each node i ∈ V . Moreover, there is a read permission from oi to si, and a
write permission from si to oi, for every node i ∈ V . These permissions are also trusted,
i.e., belonging to →t

r and →t
w, respectively; and no further permissions are trusted.

Furthermore, for every edge (i, j) ∈ E, there is a read permission from oi to sj , and a
write permission from si to oj . Formally, S = {si | i ∈ V } and O = {oi | i ∈ V };
→t
r = {(oi, si) | i ∈ V };→t

w = {(si, oi) | i ∈ V };→r = →t
r ∪ {(oi, sj) |

(i, j) ∈ E};→w = →t
w ∪ {(si, oj) | (i, j) ∈ E}.

Lemma 2. Let G be a directed graph with nodes V = {1, 2, . . . , n}, and Sol = (→′r
,→′w) be a feasible solution of IG. For any i, j ∈ V with i 6= j, oi →′r sj if and only if
si →′w oj .

Proof. The proof is by contradiction. Consider first the case when oi →′r sj and si 6→′w
oj . Observe that, si →′w oi and sj →w oj exist as both of them are trusted permissions
of IG. Thus, si →′w oi →′r sj →w oj is an integrity threat, leading to a contradiction.
The case when oi 6→′r sj and si →′w oj is symmetric, and we omit it here.

We now show that the transformation defined above from G to IG is indeed a poly-
nomial reduction from ED-TD to D-MDFP. The NP-hardness directly follows from the
following lemma.

Lemma 3. Let G be a directed graph with n nodes. G contains a subgraph G′ with K
edges whose transitive closure is G′ itself if and only IG admits a feasible solution Sol
of size 2 · (n+K).

Proof. Let G = (V,E) with V = {1, 2, . . . , n}, G′ = (V,E′), IG = (CG, TG) where
CG = (S,O,→r,→w) and TG = (→t

r,→t
w), and Sol = (→′r,→′w).

“only if” direction. Assume that G′ is the transitive closure of itself and |E′| = K.
We define Sol as follows: →′r = →t

r ∪ {oi →r sj | (i, j) ∈ E′} and →′w = →t
w

∪ {si →w oj | (i, j) ∈ E′}. From the definition of IG, it is straightforward to see
that size(Sol) = 2 · (n + K). To conclude the proof we only need to show that Sol
is a feasible solution of IG. Since→t

r⊆→′r and→t
w⊆→′w we are guaranteed that Sol

contains all trusted permissions of TG. We now show that C′ = (S,O,→′r,→′w) does
not contain any threat. Assume that there is a threat in C′. By Theorem 1, there must be
a threat of length one. If it is a confidentiality threat, then oi →′r sk →′w oz →′r sj and
oi 6→′r sj , for some i, k, z, j ∈ V with i 6= j. From the definition of IG, it must be the
case that there is a path from node i to node j in G′ and (i′, j) /∈ E which leads to a
contradiction. The case of integrity vulnerabilities is symmetric.

“if” direction. Assume that Sol is a feasible solution of IG of size 2 · (n + K).
We define E′ = {(i, j) | i 6= j ∧ oi →′r sj}. Note that, in the definition of E′

using permission si →′w ojrather than oi →′r sj would lead to the same set of edges
E′ (see Lemma 2). By the definition of IG and Lemma 2, it is direct to see the G′

is a subgraph of G and |E′| = K. We now show that the transitive closure of G′

is again G′. By contradiction, assume that there is a path from node i to node j in
G′ and there is no direct edge from i to j. But this implies that in the access control
system (S,O,→′r,→′w) there is a sequence of alternating read and write operations
from object oi to subject sj and oi 6→′r sj , which witnesses a confidentiality threat.
This is a contradiction as Sol is a feasible solution of IG.

7.3 Proof of Theorem 4

Proof. Let I = (C, T), Ŝolη≈I = (→̂r
sol
, →̂w

sol
), C′ = (S,O, →̂r

sol
, →̂w

sol
), and

C≈ = (S≈, O≈,→≈r ,→≈w). We first show that Ŝolη≈I is a feasible solution of I . As-
sume by contradiction that C′ has a one-step confidentiality threat, say o →sol

r ŝ →sol
w

o′ →sol
r s ∧ o 6→sol

r s. It is easy to see that [o] →≈r [ŝ] →≈w [o′] →≈r [s] ∧
[o] 6→≈r [s] holds, but this is not possible since COMPACT-ILP-FORMULATION(I)
contains a constraint that prevents that these relations hold conjunctly. A similar proof
exists for integrity vulnerabilities. Therefore, Ŝolη≈I is a feasible solution of I .

Now, we show that Ŝolη≈I is also optimal. Assume by contradiction that Ŝolη≈I is
not optimal, and Sol = (→sol

r ,→sol
w) is an optimal solution of I where all equiva-

lent subjects/objects have the same permissions. The existence of Sol is guaranteed
by Corollary 1. Now, we reach a contradiction showing that ηI is not optimal for
COMPACT-ILP-FORMULATION(I). For every s ∈ S, o ∈ O, η(r[o],[s]) = 1 (respec-
tively, η(w[s],[o]) = 1) if and only if o →sol

r s (respectively, s →sol
w o) holds. Notice

that η is well defined because all subjects/objects in the same equivalent class have
the same permissions in Sol . It is straightforward to prove that η allows to satisfy all
linear constraints of COMPACT-ILP-FORMULATION(I), and more importantly leads to
a greater value of the objective function. Note that, for the variable assignment η the
objective function has a value nη = size(Sol) whereas has value nηI = size(Ŝolη≈I)
for the assignment η≈I . Now, nη > nηI , and it cannot be true because η≈I is an optimal
assignment. The definition of η and the fact that it satisfies all linear constraints shows
that if I admits a solution then it shows that COMPACT-ILP-FORMULATION(I) admits
a solution. Therefore, η≈I also exists.

