Skip to main content

Automatic Detection of Histological Artifacts in Mouse Brain Slice Images

  • Conference paper
  • First Online:
Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging (BAMBI 2016, MCV 2016)

Abstract

A major challenge in automatic registration, alignment and 3-D reconstruction of conventionally processed mouse brain slice images is the presence of histological artifacts, like tissue tears and losses. These artifacts are often produced from manual sample preparation processes, which are ubiquitous in most neuroanatomical laboratories. We present a novel geometric algorithm to automatically detect these artifacts (damage regions) in mouse brain slice images. Our algorithm is guided by our observation that the tears and tissue loss in brain slice images result in external geometric medial axis of the outer contours to go deep inside the tissue. We tested our algorithm on 52 mouse brain slice images with major histological artifacts and successfully detected all the damage regions in the dataset. Our algorithm also demonstrated much lower errors when quantitatively evaluated by performing feature based registration between all 52 slices and their corresponding Allen Reference Atlas (ARA) images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Publically available from the Allen Brain Atlas Project.

References

  1. Amenta, N., Bern, M., Eppstein, D.: The crust and the \(\beta \)-skeleton: combinatorial curve reconstruction. Graph. Model Image Process. 60(2), 125–135 (1998)

    Article  Google Scholar 

  2. Berlanga, M.L., Phan, S., Bushong, E.A., Wu, S., Kwon, O., Phung, B.S., Lamont, S., Terada, M., Tasdizen, T., Martone, M.E., et al.: Three-dimensional reconstruction of serial mouse brain sections: solution for flattening high-resolution large-scale mosaics. Front. Neuroanatomy 5, 17 (2011)

    Article  Google Scholar 

  3. Bertrand, L., Nissanov, J.: The neuroterrain 3d mouse brain atlas. Front. Neuroinform. 2, 3 (2008)

    Article  Google Scholar 

  4. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Robotics-DL Tentative, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  5. Chew, L.P.: Constrained delaunay triangulations. Algorithmica 4(1–4), 97–108 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. (CVIJ) 89(2), 114–141 (2003)

    Article  MATH  Google Scholar 

  7. Crecelius, A.C., Cornett, D.S., Caprioli, R.M., Williams, B., Dawant, B.M., Bodenheimer, B.: Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J. Am. Soc. Mass Spectrometry 16(7), 1093–1099 (2005)

    Article  Google Scholar 

  8. Feng, D., Lau, C., Ng, L., Li, Y., Kuan, L., Sunkin, S.M., Dang, C., Hawrylycz, M.: Exploration and visualization of connectivity in the adult mouse brain. Methods 73, 90–97 (2015)

    Article  Google Scholar 

  9. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: a hierarchical structure for rapid interference detection. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 171–180. ACM (1996)

    Google Scholar 

  10. Hormann, K., Agathos, A.: The point in polygon problem for arbitrary polygons. Comput. Geometry 20(3), 131–144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jeschke, S., Cline, D., Wonka, P.: A GPU laplacian solver for diffusion curves and poisson image editing. ACM Trans. Graphics (TOG) 28, 116 (2009)

    Google Scholar 

  12. Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2002)

    Google Scholar 

  13. Kindle, L.M., Kakadiaris, I.A., Ju, T., Carson, J.P.: A semiautomated approach for artefact removal in serial tissue cryosections. J. Microscopy 241(2), 200–206 (2011)

    Article  Google Scholar 

  14. Kuan, L., Li, Y., Lau, C., Feng, D., Bernard, A., Sunkin, S.M., Zeng, H., Dang, C., Hawrylycz, M., Ng, L.: Neuroinformatics of the allen mouse brain connectivity atlas. Methods 73, 4–17 (2015)

    Article  Google Scholar 

  15. Kurkure, U., Le, Y.H., Paragios, N., Carson, J.P., Ju, T., Kakadiaris, I.A.: Landmark/image-based deformable registration of gene expression data. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1089–1096. IEEE (2011)

    Google Scholar 

  16. Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S., Byrnes, E.J., et al.: Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124), 168–176 (2007)

    Article  Google Scholar 

  17. Levin, D.: The approximation power of moving least-squares. Math. Comput. Am. Math. Soc. 67(224), 1517–1531 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ng, L., Hawrylycz, M., Haynor, D.: Automated high-throughput registration for localizing 3d mouse brain gene expression using ITK. In: IJ-2005 MICCAI Open-Source Workshop (2005)

    Google Scholar 

  19. Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A.M., et al.: A mesoscale connectome of the mouse brain. Nature 508(7495), 207–214 (2014)

    Article  Google Scholar 

  20. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3d structure from serial histological sections. Image Vis. Comput. 19(1), 25–31 (2001)

    Article  Google Scholar 

  21. Qiu, X., Pridmore, T., Pitiot, A.: Correcting distorted histology slices for 3D reconstruction. Proc. Med. Image Underst. Anal., 224–228, July 2009

    Google Scholar 

  22. Ragan, T., Kadiri, L.R., Venkataraju, K.U., Bahlmann, K., Sutin, J., Taranda, J., Arganda-Carreras, I., Kim, Y., Seung, H.S., Osten, P.: Serial two-photon tomography for automated ex vivo mouse brain imaging. Nature Methods 9(3), 255–258 (2012)

    Article  Google Scholar 

  23. Rangarajan, A., Chui, H., Mjolsness, E., Pappu, S., Davachi, L., Goldman-Rakic, P., Duncan, J.: A robust point-matching algorithm for autoradiograph alignment. Med. Image Anal. 1(4), 379–398 (1997)

    Article  Google Scholar 

  24. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Third International Conference on 3-D Digital Imaging and Modeling, Proceedings, pp. 145–152. IEEE (2001)

    Google Scholar 

  25. Sawiak, S.J., Williams, G.B., Wood, N.I., Morton, A.J., Carpenter, T.A.: SPMMouse: a new toolbox for SPM in the animal brain. In: ISMRM 17th Scientific Meeting & Exhibition, pp. 18–24 (2009)

    Google Scholar 

  26. Vousden, D.A., Epp, J., Okuno, H., Nieman, B.J., van Eede, M., Dazai, J., Ragan, T., Bito, H., Frankland, P.W., Lerch, J.P., et al.: Whole-brain mapping of behaviourally induced neural activation in mice. Brain Struct. Func. 220(4), 2043–2057 (2015). doi:10.1007/s00429-014-0774-0

Download references

Acknowledgement

The authors would like to thank Dr Hong-Wei Dong for providing the mouse brain atlas contour images. This work was supported in part by NIH grants (R01MH105427 and R01NS078434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Agarwal, N., Xu, X., Gopi, M. (2017). Automatic Detection of Histological Artifacts in Mouse Brain Slice Images. In: Müller, H., et al. Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging. BAMBI MCV 2016 2016. Lecture Notes in Computer Science(), vol 10081. Springer, Cham. https://doi.org/10.1007/978-3-319-61188-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61188-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61187-7

  • Online ISBN: 978-3-319-61188-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics