Skip to main content

A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images

  • Conference paper
  • First Online:
Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging (BAMBI 2016, MCV 2016)

Abstract

Template estimation plays a crucial role in computational anatomy since it provides reference frames for performing statistical analysis of the underlying anatomical population variability. While building models for template estimation, variability in sites and image acquisition protocols need to be accounted for. To account for such variability, we propose a generative template estimation model that makes simultaneous inference of both bias fields in individual images, deformations for image registration, and variance hyperparameters. In contrast, existing maximum a posterori based methods need to rely on either bias-invariant similarity measures or robust image normalization. Results on synthetic and real brain MRI images demonstrate the capability of the model to capture heterogeneity in intensities and provide a reliable template estimation from registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.mindboggle.info.

References

  1. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23, S151–S160 (2004)

    Article  Google Scholar 

  2. Zhang, M., Singh, N., Fletcher, P.T.: Bayesian estimation of regularization and atlas building in diffeomorphic image registration. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 37–48. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38868-2_4

    Chapter  Google Scholar 

  3. Allassonniere, S., Kuhn, E.: Stochastic algorithm for parameter estimation for dense deformable template mixture model. ESAIM-PS 14, 382–408 (2010)

    Article  MATH  Google Scholar 

  4. Raket, L., et al.: A nonlinear mixed-effects model for simultaneous smoothing and registration of functional data. Pattern Recogn. Lett. 38, 1–7 (2014)

    Article  Google Scholar 

  5. Sommer, S., Lauze, F., Nielsen, M., Pennec, X.: Sparse multi-scale dieomorphic registration: the kernel bundle framework. JMIV 46(3), 292–308 (2012)

    Article  MATH  Google Scholar 

  6. Pai, A., Sommer, S., Sorensen, L., Darkner, S., Sporring, J., Nielsen, M.: Kernel bundle diffeomorphic image registration using stationary velocity fields and Wendland basis functions. IEEE TMI PP(99) (2015)

    Google Scholar 

  7. Kochunov, P., Lancaster, J., Thompson, P., Woods, R., Mazziotta, J., Hardies, J., Fox, P.: Regional spatial normalization: toward an optimal target. J. Comput. Assist. Tomogr. 25(5), 805–816 (2001)

    Article  Google Scholar 

  8. Rueckert, D., et al.: Automatic construction of 3D statistical deformation models of the brain using non-rigid registration. IEEE TMI 22(8), 1014–1025 (2003)

    Google Scholar 

  9. Vialard, F.X., Risser, L., Holm, D., Rueckert, D.: Diffeomorphic atlas estimation using Karcher mean and geodesic shooting on volumetric images. In: MIUA (2011)

    Google Scholar 

  10. Zöllei, L., Jenkinson, M., Timoner, S., Wells, W.: A marginalized MAP approach and EM optimization for pair-wise registration. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 662–674. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73273-0_55

    Chapter  Google Scholar 

  11. Hromatka, M., Zhang, M., Fleishman, G.M., Gutman, B., Jahanshad, N., Thompson, P., Fletcher, P.T.: A hierarchical Bayesian model for multi-site diffeomorphic image atlases. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 372–379. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_45

    Chapter  Google Scholar 

  12. Henderson, C.R.: Estimation of genetic parameters. Biometrics 6, 186–187 (1950)

    Google Scholar 

  13. Si, S., et al.: Memory efficient kernel approximation. In: ICML (2014)

    Google Scholar 

  14. Robinson, G.: That BLUP is a good thing: the estimation of random effects. Stat. Sci. 6(1), 15–51 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sommer, S.: Anisotropic distributions on manifolds: template estimation and most probable paths. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 193–204. Springer, Cham (2015). doi:10.1007/978-3-319-19992-4_15

    Chapter  Google Scholar 

  17. Sommer, S.: Anisotropic distributions on manifolds: template estimation and most probable paths. Information Processing in Medical Imaging 193–204(2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Pai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pai, A. et al. (2017). A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images. In: Müller, H., et al. Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging. BAMBI MCV 2016 2016. Lecture Notes in Computer Science(), vol 10081. Springer, Cham. https://doi.org/10.1007/978-3-319-61188-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61188-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61187-7

  • Online ISBN: 978-3-319-61188-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics