Skip to main content

Sparse Probabilistic Parallel Factor Analysis for the Modeling of PET and Task-fMRI Data

  • Conference paper
  • First Online:
Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging (BAMBI 2016, MCV 2016)

Abstract

Modern datasets are often multiway in nature and can contain patterns common to a mode of the data (e.g. space, time, and subjects). Multiway decomposition such as parallel factor analysis (PARAFAC) take into account the intrinsic structure of the data, and sparse versions of these methods improve interpretability of the results. Here we propose a variational Bayesian parallel factor analysis (VB-PARAFAC) model and an extension with sparse priors (SP-PARAFAC). Notably, our formulation admits time and subject specific noise modeling as well as subject specific offsets (i.e., mean values). We confirmed the validity of the models through simulation and performed exploratory analysis of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) data. Although more constrained, the proposed models performed similarly to more flexible models in approximating the PET data, which supports its robustness against noise. For fMRI, both models correctly identified task-related components, but were not able to segregate overlapping activations.

J.L. Hinrich and M. Mørup were supported by the Lundbeck Foundation (grant. no. R105-9813).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jolliffe, I.: Principal Component Analysis, vol. 487. Springer, New York (1986)

    Book  MATH  Google Scholar 

  2. Tipping, M., Bishop, C.: Probabilistic principal component analysis. Royal Stat. Soc. 23(3), 492–503 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Guan, Y., Dy, J.: Sparse probabilistic principal component analysis. In: International Conference on Artificial Intelligence and Statistics, pp. 185–192 (2009)

    Google Scholar 

  4. Harshman, R.: Foundations of the parafac procedure: models and conditions for an “explanatory” multi-modal factor analysis. (1970)

    Google Scholar 

  5. Carroll, J., Chang, J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  MATH  Google Scholar 

  6. Hitchcock, F.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6(1), 164–189 (1927)

    Article  MATH  Google Scholar 

  7. Kruskal, J.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Acar, E., Yener, B.: Unsupervised multiway data analysis: a literature survey. IEEE Trans. Knowl. Data Eng. 21(1), 6–20 (2009)

    Article  Google Scholar 

  10. Mørup, M.: Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdisc. Rev. Data Mining Knowl. Disc. 1(1), 24–40 (2011)

    Article  Google Scholar 

  11. Rasmussen, M., Bro, R.: A tutorial on the lasso approach to sparse modeling. Chemometr. Intell. Lab. Syst. 119, 21–31 (2012)

    Article  Google Scholar 

  12. Attias, H.: A variational bayesian framework for graphical models. Adv. Neural Inform. Process. Syst. 12(1–2), 209–215 (2000)

    Google Scholar 

  13. Nielsen, F.: Variational approach to factor analysis and related models (2004)

    Google Scholar 

  14. Ermis, B., Cemgil, A.: A Bayesian tensor factorization model via variational inference for link prediction 3, 1–9. arXiv preprint arXiv:1409.8276 (2014)

  15. Zhao, Q., Zhang, L., Cichocki, A., Hoff, P.: Bayesian CP factorization of incomplete tensors with automatic rank determination 37(9), 1–15. arXiv preprint arXiv:1401.6497v2 (2015)

  16. Guo, W., Yu, W.: Variational Bayesian PARAFAC decomposition for Multidimensional Harmonic Retrieval. In: Proceedings of 2011 IEEE CIE International Conference on Radar, RADAR 2011, vol. 2, pp. 1864–1867 (2011)

    Google Scholar 

  17. Bishop, C.: Variational principal components. In: Ninth International Conference on Artificial Neural Networks, ICANN 1999 (Conf. Publ. No. 470), vol. 1, pp. 509–514. IET (1999)

    Google Scholar 

  18. Robert, P., Escoufier, Y.: A unifying tool for linear multivariate statistical methods: the RV-coefficient. Appl. Stat. 25, 257–265 (1976)

    Article  MathSciNet  Google Scholar 

  19. Andersson, C.A., Bro, R.: The N-way toolbox for MATLAB. Chemometr. Intell. Lab. Syst. 52(1), 1–4 (2000)

    Article  Google Scholar 

  20. Andersson, J., Jenkinson, M., Smith, S.: Non-linear registration aka Spatial normalisation. FMRIB Technial report TR07JA2, p. 22, June 2007

    Google Scholar 

  21. Knudsen, G., Jensen, P., Erritzoe, D., Baaré, W., Ettrup, A., Fisher, P., Gillings, N., Hansen, H., Hansen, L., Hasselbalch, S., Henningsson, S., Herth, M., Holst, K., Iversen, P., Kessing, L., Macoveanu, J., Madsen, K., Mortensen, E., Nielsen, F., Paulson, O., Siebner, H., Stenbæk, D., Svarer, C., Jernigan, T., Strother, S., Frokjaer, V.: The center for integrated molecular brain imaging (Cimbi) database. NeuroImage 124, 1213–1219 (2015)

    Google Scholar 

  22. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  23. Greve, D., Fischl, B.: Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48(1), 63–72 (2009)

    Article  Google Scholar 

  24. Calhoun, V., Liu, J., Adali, T.: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage 45(1 Suppl), S163–S172 (2009)

    Article  Google Scholar 

  25. Beckmann, C., Smith, S.: Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage 25(1), 294–311 (2005)

    Article  Google Scholar 

  26. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2), 825–841 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Beliveau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Beliveau, V., Papoutsakis, G., Hinrich, J.L., Mørup, M. (2017). Sparse Probabilistic Parallel Factor Analysis for the Modeling of PET and Task-fMRI Data. In: Müller, H., et al. Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging. BAMBI MCV 2016 2016. Lecture Notes in Computer Science(), vol 10081. Springer, Cham. https://doi.org/10.1007/978-3-319-61188-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61188-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61187-7

  • Online ISBN: 978-3-319-61188-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics