Abstract
Computing similarity between all pairs of patients in a dataset enables us to group the subjects into disease subtypes and infer their disease status. However, robust and efficient computation of pairwise similarity is a challenging task for large-scale medical image datasets. We specifically target diseases where multiple subtypes of pathology present simultaneously, rendering the definition of the similarity a difficult task. To define pairwise patient similarity, we characterize each subject by a probability distribution that generates its local image descriptors. We adopt a notion of affinity between probability distributions which lends itself to similarity between subjects. Instead of approximating the distributions by a parametric family, we propose to compute the affinity measure indirectly using an approximate nearest neighbor estimator. Computing pairwise similarities enables us to embed the entire patient population into a lower dimensional manifold, mapping each subject from high-dimensional image space to an informative low-dimensional representation. We validate our method on a large-scale lung CT scan study and demonstrate the state-of-the-art prediction on an important physiologic measure of airflow (the forced expiratory volume in one second, FEV1) in addition to a 5-category clinical rating (so-called GOLD score).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Batmanghelich, N.K., Saeedi, A., Cho, M., Estepar, R.S.J., Golland, P.: Generative method to discover genetically driven image biomarkers. In: International Conference on Information Processing and Medical Imaging, vol. 17 (1), pp. 30–42 (2015)
Castaldi, P.J., San José Estépar, R., Mendoza, C.S., Hersh, C.P., Laird, N., Crapo, J.D., Lynch, D.A., Silverman, E.K., Washko, G.R.: Distinct quantitative computed tomography emphysema patterns are associated with physiology and function in smokers. Am. J. Respir. Crit. Care Med. 188(9), 1083–1090 (2013)
Chang, B., Kruger, U., Kustra, R., Zhang, J.: Canonical correlation analysis based on hilbert-schmidt independence criterion and centered kernel target alignment. In: Proceedings of the 30th International Conference on Machine Learning, pp. 316–324 (2013)
Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification: concepts and algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)
Gerber, S., Tasdizen, T., Joshi, S., Whitaker, R.: On the manifold structure of the space of brain images. Med. Image Comput. Comput. Assist. Interv. 12(Pt 1), 305–312 (2009)
Hamm, J., Ye, D.H., Verma, R., Davatzikos, C.: Gram: a framework for geodesic registration on anatomical manifolds. Med. Image Anal. 14(5), 633–642 (2010)
Holzer, M., Donner, R.: Over-segmentation of 3D medical image volumes based on monogenic cues. In: CVWW (January 2014), pp. 35–42 (2014)
Liu, K., Skibbe, H., Schmidt, T., Blein, T., Palme, K., Brox, T., Ronneberger, O.: Rotation-invariant hog descriptors using fourier analysis in polar and spherical coordinates. Int. J. Comput. Vis. 106(3), 342–364 (2014)
Loftsgaarden, D.O., Quesenberry, C.P., et al.: A nonparametric estimate of a multivariate density function. Anna. Math. Stat. 36(3), 1049–1051 (1965)
Lynch, D.A.: Progress in imaging copd, 2004–2014. J. COPD Found. Chronic Obstructive Pulm. Dis. 1(2), 155–165 (2014)
Lynch, D.A., Al-Qaisi, M.A.: Quantitative computed tomography in chronic obstructive pulmonary disease. J. Thorac. Imaging 28(5), 284–290 (2013)
Muja, M., Lowe, D.G.: Scalable nearest neighbour algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)
Regan, E.A., Hokanson, J.E., Murphy, J.R., Make, B., Lynch, D.A., Beaty, T.H., Curran-Everett, D., Silverman, E.K., Crapo, J.D.: Genetic epidemiology of copd (copdgene) study design. COPD: J. Chronic Obstructive Pulm. Dis. 7(1), 32–43 (2011)
Schroeder, J.D., McKenzie, A.S., Zach, J.A., Wilson, C.G., Curran-Everett, D., Stinson, D.S., Newell, J.D., Lynch, D.A.: Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. American Journal of Roentgenology 201(3) (2013)
Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 591–606 (2009)
Sorensen, L., Nielsen, M., Lo, P., Ashraf, H., Pedersen, J.H., De Bruijne, M.: Texture-based analysis of copd: a data-driven approach. IEEE Trans. Med. Imaging 31(1), 70–78 (2012)
Toews, M., Wachinger, C., Estepar, R.S.J., Wells, W.M.: A feature-based approach to big data analysis of medical images. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 339–350. Springer, Cham (2015). doi:10.1007/978-3-319-19992-4_26
Vogl, W.-D., Prosch, H., Müller-Mang, C., Schmidt-Erfurth, U., Langs, G.: Longitudinal alignment of disease progression in fibrosing interstitial lung disease. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 97–104. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_13
Wang, Q., Kulkarni, S.R., Verdú, S.: Divergence estimation for multidimensional densities via-nearest-neighbor distances. IEEE Trans. Inf. Theory 55(5), 2392–2405 (2009)
Zhang, Z., Wang, J.: Mlle: modified locally linear embedding using multiple weights. Adv. Neural Inf. Process. Syst. 19, 1593–1600 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Batmanghelich, N.K., Saeedi, A., Estepar, R.S.J., Cho, M., Wells, W.M. (2017). Inferring Disease Status by Non-parametric Probabilistic Embedding. In: Müller, H., et al. Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging. BAMBI MCV 2016 2016. Lecture Notes in Computer Science(), vol 10081. Springer, Cham. https://doi.org/10.1007/978-3-319-61188-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-61188-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61187-7
Online ISBN: 978-3-319-61188-4
eBook Packages: Computer ScienceComputer Science (R0)