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Abstract

Pulmonary emphysema is traditionally subcategorized into three subtypes, which have distinct 

radiological appearances on computed tomography (CT) and can help with the diagnosis of 

chronic obstructive pulmonary disease (COPD). Automated texture-based quantification of 

emphysema subtypes has been successfully implemented via supervised learning of these three 

emphysema subtypes. In this work, we demonstrate that unsupervised learning on a large 

heterogeneous database of CT scans can generate texture prototypes that are visually 

homogeneous and distinct, reproducible across subjects, and capable of predicting accurately the 

three standard radiological subtypes. These texture prototypes enable automated labeling of lung 

volumes, and open the way to new interpretations of lung CT scans with finer subtyping of 

emphysema.

1 Introduction

Chronic obstructive pulmonary disease (COPD), characterized by limitation of airflow, is a 

leading cause of morbidity and mortality [1]. Pulmonary emphysema, defined by a loss of 

lung tissue in the absence of fibrosis, overlaps considerably with COPD.

Pulmonary emphysema is traditionally subcategorized into three standard subtypes, which 

were initially defined at autopsy, and can be visually assessed on computed tomography 

(CT), according to the following definitions [2]: centrilobular emphysema (CLE), defined as 

focal regions of low attenuation surrounded by normal lung attenuation; panlobular 
emphysema (PLE), defined as diffuse regions of low attenuation involving entire secondary 

pulmonary lobules; and paraseptal emphysema (PSE), defined as regions of low attenuation 

adjacent to visceral pleura (including fissures). Given that these subtypes are associated with 
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distinct risk factors and clinical manifestations [3][4], they are therefore likely to represent 

different diseases and can help with the diagnosis of COPD.

Radiologists’ interpretation of standard subtypes is labor-intensive, and has modest inter-

rater agreements [2, 5]. Automated texture-based analysis of emphysema offers the potential 

of automated COPD diagnosis and catalyzing research (e.g. discovering emphysema 

subtypes), and is receiving increasing interest [6–10]. However, most existing approaches 

are limited to supervised emphysema subtype classification using manually annotated scans 

in local regions of interest (ROIs), which are very costly and time-consuming to obtain. 

Furthermore, it is unclear if the supervised classifiers generalize to other datasets with 

varying in-plane resolutions and scanner types.

A recent clinical study [2] demonstrated the reliability and clinical significance of global 

(rather than local) labeling of lung volumes using the three standard subtypes. Global 

labeling generates weakly labeled data that was used for the classification of COPD subjects 

with multiple instance learning (MIL) [11]. However, MIL has only been demonstrated so 

far for binary labeling of emphysema versus normal tissue, rather than to distinguish the 

three subtypes, and can generate unreliable local ROI labeling.

In this work, we present a novel framework to discover unsupervised fine-grained prototypes 

that go beyond but still have the power of encoding the three standard emphysema subtypes. 

Our method clusters local ROIs of lung volumes into texture prototypes in an unsupervised 

manner, and builds signatures of lung volumes with texture prototype histograms. The extent 

of standard emphysema subtypes can be predicted from these prototype histograms with a 

constrained multivariate regression on global labels. To our knowledge, this is the first study 

whereby texture-based predictions are used to globally characterize the standard emphysema 

subtypes.

Three types of texture features were tested, extracted from 3D or 2D local ROIs, to generate 

the emphysema prototypes: 1) frequency histograms of textons (called texton-based 

features), used in [8][9]; 2) soft histograms of intensities and difference of Gaussian (DoG) 

responses (called DOG2 features), used in [12]; and 3) joint histograms of local binary 

patterns (LBP) and intensities (called LBP2 features), used in [7].

2 Method

2.1 Framework Overview

Our framework is divided into a learning stage in an unsupervised sense, and a prediction 

stage of radiological emphysema subtypes using globally annotated data. The intensity of 

lung voxels, inside lung masks generated using the APOLLO® software (VIDA Diagnostics, 

Coralville, Iowa), are rescaled from [−1024, −400] HU to [0, 1] via either linear or 

sigmoidal mapping in pre-processing.

In the learning stage, texture prototypes are learned and prototype histograms Hp are built 

for each training lung volume.
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Fig. 1 illustrates the pipeline for generating prototype histograms. Sample points are 

randomly extracted uniformly within the lung volumes. 2D or 3D neighborhoods of sampled 

points are used as local ROIs, with a size of 25mm2 or 25mm3, approximating the diameter 

of secondary pulmonary lobules. Our target number of sample points per scan is N = (lung 

volume)/25mm3. Since we discard ROIs with more that 50% of non-lung field, we adjust the 

sample ratio α so that α · N − Ndiscarded = N. The value α = 5 is suitable for the population 

of scans, leading to an average of 1,512 sample points per CT scan. ROIs are characterized 

with texture features (texton-based, DOG2 or LBP2), and are clustered into K texture 

prototypes in an unsupervised manner. For interpretation, prototypes are ordered according 

to the average intensity value of training ROIs belonging to each prototype. Each sample 

point is labeled with the prototype centroid most similar to its ROI (i.e. with least distance in 

feature space). Finally, other voxels within the lung volumes are labeled by assigning the 

prototype label of the nearest sample point.

In the prediction stage, sample points and ROIs are extracted from test lung volumes and 

ROI texture features are generated. ROIs are labeled by assigning the most similar prototype 

centroid. Prototype histograms are then generated for test lung volumes following the same 

procedure as in the training stage.

To evaluate our texture prototypes, we regressed their occurrence against global emphysema 

labels in [2] on training scans, with a constrained multivariate model. Global labels Hg 

encode the extent of standard emphysema subtypes referred to as %CLE, %PLE, %PSE. The 

residual, denoted %NE, corresponds to tissue without emphysema (but maybe with some 

lung diseases).

In the following sections, we detail the texture features, the unsupervised learning of 

prototypes and the regression model.

2.2 Texture Features

Texton-based Features—Texton-based features characterize ROIs with the help of a 

texton codebook. The texton codebook is formed by the cluster centers of intensity values 

(after linear mapping) from small-sized local patches (here 3 voxels in each dimension) 

randomly extracted from ROIs in the training set. Clustering is performed with K-means. By 

projecting all small-sized patches onto the codebook, the texton-based feature of the ROI is 

the normalized histogram of texton frequencies. Targeting 4 classes and 10 textons per class 

[8], the feature vector length is set to 40, using a codebook with 40 textons.

Note that our texton prototype histogram uses the bag-of-words (BoW)[13] model on two 

scales: 1) building of ROI-level texture features based on a texton dictionary; 2) building 

subject-level lung CT signatures based on texture prototypes. To our knowledge, BoW has 

not been exploited for subject-level signatures before.

DOG2 Features—The DOG2 feature of a ROI is a concatenation of four normalized soft 

histograms: one intensity histogram, and three histograms of DoG responses at three 
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octaves. Using 10 bins for each histogram, following the setting in [12], leads to a feature 

vector of length 40.

Intensity values in CT scans encode X-ray attenuations in Hounsfield units (HU) and their 

range is very large. To focus the texture learning process on the intensity range of interest 

(lung parenchyma and air), a sigmoid function is used, as in [12], to map values to the 

interval [0 1] with the highest contrast assigned to the range [−1000 −900] HU where 

textural characteristics due to emphysema are presumed to be present.

LBP2 Features—The LBP2 feature of a ROI is the joint histogram of LBP codes and 

intensity values (after linear mapping) of each voxel within the ROI. The LBP codes are 

obtained by thresholding samples in a local neighborhood around center voxel x. Formally:

LBP(x; R, P) = ∑
p = 0

P − 1
H(I(xp) − I(x))2p (1)

where I(x) is the intensity of center voxel, xp are P voxels sampled around x at a given radial 

distance R, and H(·) is the Heaviside function. Rotational invariance is achieved by rotating 

the radial sampling until the lowest possible LBP(x; R, P) value is found. We use 10 uniform 

rotational invariant LBP codes with R=1 and P=8, and 4 bins for the intensity histogram to 

match with other feature length, making the total feature length also 40 (4 × 10).

2.3 Prototype Clustering

The number of prototypes K should be large enough to handle the diversity of textures 

encountered in the lung volumes (i.e. good intra-prototype homogeneity), but small enough 

to avoid redundancy (i.e. good inter-prototype differences). Our strategy is to first select an 

empirically large number K so as to generate homogenous prototypes and then trim the set 

to a smaller number of sufficient prototypes (number likely different for different texture 

features) according to a dedicated metric. We choose K-means for the clustering task 

because of its efficiency at dealing with a large number of ROIs over scans.

To trim the number of prototypes, instead of testing smaller K values with K-means, which 

tends to decrease all intra-cluster homogeneity, we propose to merge prototypes iteratively 

according to their inter-prototype distance and spatial co-occurrence.

The inter-prototype distance is measured by averaging the χ2 distance (common for 

histogram-based features) between each pair in feature space. The spatial co-occurrence of 

two prototypes i and j (i ≠ j) is measured as:

S(i, j) = q(i, j) + q( j, i)
∑k = 1

K q(i, k) + ∑k = 1
K q( j, k)

(2)
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where q(i, j) is the frequency of prototypes i and j appearing together in a pre-defined small 

neighborhood (here 10 voxels in each dimension).

At each iteration of the pruning process, each pair of prototypes is given a rank Ri, j
f  in inter-

prototype distance (smallest ranks first), and a rank Ri, j
S  in spatial similarity (largest ranks 

first). The pair of prototypes to merge is the first one according to the rank: Ri, j = Ri, j
f + Ri, j

S .

2.4 Constrained Multivariate Regression

The probability of voxel x belonging to a lung tissue class can be modeled as:

P(L(x) = Ci) = ∑
k = 1

K
P(L(x) = Ci |F(x) = pk)P(F(x) = pk) (3)

where L(x) is the label of voxel x as Ci ∈ {CLE, PLE, PSE, NE}, and F(x) is the voxel 

prototype label pk with k ∈ 1, …, K. If prototypes are homogeneous, P(L(x) = Ci|F(x) = pk) 

can be assumed to be consistent throughout ROIs and subjects. We therefore infer the 

relation as:

YN × 4 = XN × KAK × 4 (4)

where N is the number of training scans. Each row in Y is the global label Hg = [P(L(x) = 

CLE), P(L(x) = PSE), P(L(x) = PLE), P(L(x) = NE)] for one scan, each row in X is the 

prototype histogram Hp = [P(F(x) = p1), …, P(F(x) = pK)] for the same scan, and A is the 

matrix of regression coefficients with Ak,i = P(L(x) = Ci|F(x) = pk), i = 1, …, 4 and k = 1, 

…, K. We propose to learn A with the following constrained multivariate regression model:

argminA‖XtrainA − Y train‖2,  subject to 0 < Ak, i < 1 and  ∑
i = 1

4
Ak, i = 1 (5)

3 Results and Discussions

3.1 Data

The dataset includes 321 full-lung CT scans from the Multi-Ethnic Study of Atherosclerosis 

(MESA) COPD Study [2], among which 4 scans are discarded due to excessive motion 

artifact or incomplete lung field of view. All CT scans were acquired at full inspiration with 

either a Siemens 64-slice scanner or a GE 64-slice scanner, and reconstructed using B35/

Standard kernels with axial resolutions within the range [0.58, 0.88]mm, and 0.625mm slice 

thickness. All scans were acquired at 120 kVp, 0.5 seconds, with milliamperes (mA) set by 

body mass index following the SPIROMICS protocol [14].
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Global labels of standard emphysema subtypes are available for each scan, corresponding to 

the average of visually assessed scores by four experienced radiologists [2]. Inter-rater 

intraclass correlations, evaluated on 40 random scans, are reported in Fig. 2. The clinically-

evaluated prevalence of emphysema in this dataset is 27%, with 14% CLE-predominance, 

9% PSE-predominance, and 4% PLE-predominance.

3.2 Quality of Predictions

The quality of the predictions is evaluated using intraclass correlation (ICC) with ground 

truth global labels. To achieve a balance between the number of training scans (large enough 

to learn lung textures) and the number of test scans (large enough so that the prediction 

performance is not biased by extreme points), we used a 4-fold cross validation setup, with 

3/4 of scans used for training, and 1/4 used for testing. All features were computed within 

3D ROIs. Texton-based features were also extracted in 2D ROIs for comparison. We select 

K = 100 as our benchmark value, from which we iteratively merge prototypes. We report the 

evolution of prediction capabilities as K is reduced in Fig. 2 (all p−values < 0.01).

Overall, texton-based and DOG2 features give robust prediction that out-perform the intra-

rater agreement, while LBP2 features have poor to modest prediction capabilities. One 

reason might be that intensity information in LBP2 is compressed with our current feature 

length, while intensities improved the discriminative capability of the original LBP code in 

[7]. However, we observed that a feature length over 50 decreases the robustness and 

drastically increases the convergence time for unsupervised prototype clustering. This makes 

LBP2 less favorable in our unsupervised learning context.

The comparison of 2D versus 3D ROIs with texton-based features indicates that the richer 

information in 3D neighborhood is helpful for modeling emphysema subtypes, at the price 

of additional computational cost for feature extraction.

Regarding the effect of prototype merging, ICC values remain steady when K > 60 for 

texton-based features. Merging is capable of reducing model complexity with little sacrifice 

in prediction performance. For DOG2 features, the performance begins to decrease only 

after K < 50. For LBP2 features, however, the performance degrades immediately after 

merging, which may be because the LBP2-based prototypes are not sufficiently 

homogeneous from the beginning.

Note that using a high number of K, much larger than the number of standard emphysema 

subtypes or than required for predictive power of these subtypes, is driven by our goal to be 

able to discover finer emphysema subtypes. The current arbitrary number K = 100 will be 

further trimmed with an optimization metric incorporating respiratory symptoms and 

generalization capabilities to other datasets, which is ongoing work of our study.

3.3 Reproducibility of Prototypes

Reproducibility of prototypes is measured by computing the overlap of prototype labeling 

with two distinct training sets (by randomly dividing the subjects into two groups), in a 

manner similar to [15]. Formally, we measure:
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R(L, L′) = maxπ
1
K ∑

k = 1

K
𝟙(L(Xk) = π(L′(Xk))) (6)

where L and L′ are prototype labeling with two different training sets, 𝟙 is the 0–1 loss 

function, Xk denotes ROIs labeled with prototype k, and π denotes the permutations of the 

K prototypes using the Hungarian method [15] for optimal matching.

Fig. 3 (a) plots R versus number of prototypes. For K < 50, reproducibility is high (R > 0.7) 

for all types of features. When K > 60, 3D texton-based prototypes are more reproducible (R 
> 0.6 with K as large as 100).

3.4 Visualization of Sample Prototypes

Visual examples of prototypes generated with three different types of features using 3D 

ROIs are provided in Fig. 3 (b). Texton and DOG2-based prototypes have high intra-class 

similarity and show clearly distinct lung tissue patterns, while LBP2-based prototypes have 

lower intra-class homogeneity, which agrees with the poorer prediction results.

We also provide in Fig. 4 visual examples of prototypes that are likely to encode 

emphysematous lung tissues.

First, subjects in the dataset were separated into two groups: disease (visually assessed 

extent of emphysema [2] larger than 0) and normal (visually assessed extent of emphysema 

equals to 0).

Out of the K = 100 benchmark prototypes, we selected the ones for which occurrence within 

the disease population was 3 times higher than in the normal population. This lead to subsets 

of n = 16, 17, 4 disease prototypes when using respectively texton-based, DOG2 and LBP2 

features, in 3D ROIs. These subsets are illustrated in Fig. 4 on group of 9 patches of size of 

50mm3 from random disease subjects. The large patch size (twice the length of the ROIs 

used for prototype generation) is used to reveal the presence of nearby lung borders.

4 Conclusions

In this work, we presented a novel framework to generate unsupervised lung texture 

prototypes that can be used to predict the overall extent of standard emphysema subtypes 

from a heterogeneous database of lung CT scans, using standard radiological global labels as 

the ground truth. We cluster unlabeled local ROIs into texture prototypes, and encode lung 

CT scans with prototype histograms. Labeling of ROIs is tested in 2D or 3D, and using three 

types of features.

The intraclass correlations between prediction and ground truth labeling indicate that texton 

and DOG2 features are capable of learning homogenous prototypes and lead to very robust 

predictions of standard emphysema labels that outperform the inter-rater agreement, while 

LBP2 feature is less discriminative (at least with similar feature vector length).
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We tested model reduction via prototype merging based on inter-prototype distance and 

spatial co-occurrence. Results show that robust prediction can be achieved with at least 

K=60 merged prototypes for texton-based features and K=50 for DOG2 features. 

Reproducibility of texton-based prototypes is superior when K > 60. These homogeneous 

and reproducible texture prototypes show potential in new interpretations of lung CT scans 

with finer subtyping. Since texture prototypes link image analysis-based discovery with 

radiological prior knowledge, and enable automated labeling of lung volumes and generation 

of scan signatures, they can be used for multiple tasks such as correlation with omic 

measures, sub-phenotyping of emphysema or image indexing and retrieval. Our future work 

will focus on two aspects: 1) As texton-based feature and DOG2 feature both demonstrated 

good capability at discovering lung texture prototypes, we would like to explore their 

combination to boost robustness and discovery power, which can be achieved by either 

feature concatenation followed by feature dimension reduction (to reduce the computational 

complexity, as in [9]), or post-clustering ensembling [16]; 2) The number of prototype K 
will be further trimmed to find clinically significant sub-categories of emphysema, with an 

optimization metric incorporating clinical data and generalization capability.
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Fig.1. 
Illustration of the pipeline for generating texture prototype histograms.
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Fig.2. 
Intraclass correlation (ICC) between predicted global labels and ground truth versus number 

of merged prototypes (dashed line: 95% confidence interval).
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Fig.3. 
(a) Reproducibility metric versus number of merged prototypes. (b) Examples of axial cuts 

from ROIs in six prototypes with three feature types. The texton-based prototypes are 

selected as the 1st, 5th, 20th, 40th, 80th and 95th benchmark prototypes. The DOG2 and 

LBP2-based prototypes are those having the most overlap with texton-based prototypes for 

ROI labeling. Window level: [−1000, −700] HU.
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Fig.4. 
Axial cuts of 3D ROIs from subsets of prototypes generated with either texton-based, DOG2 

or LBP2 features and that have higher occurrence in subjects with emphysema than in 

normals. Window level: [−1000 −700] HU.
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