Skip to main content

The Experience at University of L’Aquila on Shape Memory Alloys Actuators

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2017)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 49))

Included in the following conference series:

Abstract

In this paper the shape memory alloys are presented and their special characteristics as the possibility of shape recovery are illustrated. Then some possibilities about the control are analyzed and some applications developed at the University of L’Aquila, Italy, are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strittmatter J, Gümpel P, Zhigang H (2009) Long-time stability of shape memory actuators for pedestrian safety system. J Achiev Mater Manuf Eng 34:23–30

    Google Scholar 

  2. Williams EA, Shaw G, Elahinia M (2010) Control of an automotive shape memory alloy mirror actuator. Mechatronics 20:527–34

    Google Scholar 

  3. Brugger D, Kohl M, Hollenbach U, Kapp A, Stiller C (2006) Ferromagnetic shape memory microscanner system for automotive applications. Int J Appl Electromagnet Mech 23:107–112

    Google Scholar 

  4. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerospace Eng 221:535–552

    Google Scholar 

  5. Huettl B, Willey C (2000) Design and development of miniature mechanisms for small spacecraft. In: 14th AIAA/USU small satellite conference, pp 1–14

    Google Scholar 

  6. Fujun P, Xin-Xiang J, Yan-Ru H, Ng A (2005) Application of shape memory alloy actuators in active shape control of inflatable space structures. In: Aerospace conference. IEEE, pp 1–10

    Google Scholar 

  7. Prahlad H, Chopra I (2001) Design of a variable twist tilt-rotor blade using shape memory alloy (SMA) actuators. In: 8th Annual international symposium on smart structures and materials. International society for optics and photonics, pp 46–59

    Google Scholar 

  8. Landis GA, Jenkins PP (1997) Dust on mars: materials adherence experiment results from mars pathfinder. In: 1997 conference record of the IEEE photovoltaic specialists conference, pp 865–869

    Google Scholar 

  9. Kuribayashi K (1986) A new actuator of a joint mechanism using TiNi alloy wire. Int J Rob Res 4:47–58

    Google Scholar 

  10. Fujita H (1989) Studies of micro actuators in Japan. In: IEEE international conference on robotic automation. Institute of Industrial Science, Tokyo University, pp 1559–1564

    Google Scholar 

  11. Caldwell DG, Taylor PM (1988) Artificial muscles as robotic actuators. In: IFAC robot control conference (Syroc 1988), Karlsruhe, Germany, pp 401–406

    Google Scholar 

  12. Honma D, Iguchi MY (1985) Micro robots and micro mechanisms using shape memory alloy to robotic actuators. Rob Syst 2:3–25

    Google Scholar 

  13. Pfeifer R, Müller CW, Hurschler C, Kaierle S, Wesling V, Haferkamp H (2013) Adaptable orthopedic shape memory implants. Procedia CIRP 5:253–258

    Google Scholar 

  14. Maynard RS Distributed activator for a two-dimensional shape memory alloy. US Patents 59412491999

    Google Scholar 

  15. Zider RB, Krumme JF (1988) Eyeglass frame including shape-memory elements. US Patents 4772112

    Google Scholar 

  16. Lim G, Park K, Sugihara M, Minami K, Esashi M (1996) Future of active catheters. Sens Actuators 56:113–21

    Google Scholar 

  17. Ikuta K, Tsukamoto M, Hirose S (1991) Mathematical model and experimental verification of shape memory alloy for designing micro actuator. In: Proceedings of IEEE microelectro mechanical systems conference

    Google Scholar 

  18. Lu A, Grant D, Hayward V (1997) Design and comparison of high strain shape memory alloy actuators. In: Proceedings of 1997 IEEE international conference on robotics and automation

    Google Scholar 

  19. Raparelli T, Beomonte Zobel P, Durante F (2009) Mechanical design of a 3-d of parallel robot actuated by smart wires. In: Proceedings of EUCOMES 2008 - the 2nd European conference on mechanism science, pp 271–278. doi:10.1007/978-1-4020-8915-2_33

  20. Raparelli T, Beomonte Zobel P, Durante F (2000) SMST-2000 conference proceedings, pp 243–250

    Google Scholar 

  21. Raparelli T, Beomonte Zobel P, Durante F (2002) SMA-wire position control with electrical resistance feedback. In: Proceedings 3rd world conference on structural control, pp 391–398. ISBN 0-471-48980-8

    Google Scholar 

  22. Maffiodo D, Raparelli T (2016) Resistance feedback of a shape memory alloy wire. Adv Intell Syst Comput 371:97–104. doi:10.1007/978-3-319-21290-6_10

  23. Raparelli T, Beomonte Zobel P, Durante F (2002) A robot actuated by shape memory alloy wires. In: IEEE international symposium on industrial electronics, vol 2, no 1026323, pp 420–423

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Durante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Durante, F., Beomonte Zobel, P., Raparelli, T. (2018). The Experience at University of L’Aquila on Shape Memory Alloys Actuators. In: Ferraresi, C., Quaglia, G. (eds) Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-61276-8_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61276-8_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61275-1

  • Online ISBN: 978-3-319-61276-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics