Skip to main content

P.I.G.R.O.: An Active Exoskeleton for Robotic Neurorehabilitation Training Driven by an Electro-Pneumatic Control

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2017)

Abstract

This paper presents the structure and the main innovations of P.I.G.R.O. (Pneumatic Interactive Gait Rehabilitation Orthosis). It is an active exoskeleton electro-pneumatically controlled with 6 DoF (Degree of Freedom) in the sagittal plane. Robotic neurorehabilitation trainings are its main field of application. Some preliminary tests are carrying on with brain stroke and ictus patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pignolo L (2009) Robotics in neuro-rehabilitation. Spec Rep J Rehabil Med 41:955–960. doi:10.2340/16501977-0434

    Article  Google Scholar 

  2. Dylan JE (2009) On the understanding and development of modern physical neurorehabilitation methods: robotics and non-invasive brain stimulation. J NeuroEng Rehabil 6(3). doi:10.1186/1743-0003-6-3

  3. Speich JE, Rosen J (2004) Medical robotics. In: Encyclopedia of biomaterials and biomedical engineering, pp 983–993. doi:10.1081/e-ebbe-120024154

  4. Barbeau H (2003) Locomotor training in neurorehabilitation: emerging rehabilitation concepts. Neurorehabil Neural Repair 17(1):3–11

    Article  Google Scholar 

  5. Diaz I, Gil JJ, Sanchez E (2011) Lower-limb robotic rehabilitation: literature review and challenges. J Robot 2011:1–11

    Article  Google Scholar 

  6. Low KH (2011) Robot-assisted gait rehabilitation: from exoskeletons to gait systems. In: Defense science research conference and expo (DSR). IEEE, pp 1–10

    Google Scholar 

  7. Belforte G, Eula G, Appendino S, Sirolli S (2011) Pneumatic interactive gait rehabilitation orthosis: design and preliminary testing. Proc. Inst Mech Eng Part H: J Eng Med 225(2):158–169. doi:10.1243/09544119JEIM803

    Article  Google Scholar 

  8. Belforte G, Eula G, Appendino S, Geminiani GC, Zettin M (2012) Tutore attivo per neuroriabilitazione motoria degli arti inferiori, sistema comprendente tale tutore e procedimento per il funzionamento di tale sistema. Brevetto n. TO2012A000226, 15 Mar 2012

    Google Scholar 

  9. Belforte G, Eula G, Sirolli S, Bois P, Geda E, D’Agata F, Cauda F, Duca S, Zettin M, Virgilio R, Geminiani G, Sacco K (2014) Bra.Di.P.O. and P.I.G.R.O.: innovative devices for motor learning programs. J Robot 12. doi:10.1155/2014/656029. Rehabilitation Robotics 2013 – Special Issue

  10. ISO 7250-1: Basic human body measurements for technological design — Part 1: Body measurement definitions and landmarks

    Google Scholar 

  11. ISO/TR 7250-2: Basic human body measurements for technological design — Part 2: Statistical summaries of body measurements from individual ISO populations

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank Eng. Alessio Genta, Eng. Yue Han and Eng. Fabio Racca for helping in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Eula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Sacco, K. et al. (2018). P.I.G.R.O.: An Active Exoskeleton for Robotic Neurorehabilitation Training Driven by an Electro-Pneumatic Control. In: Ferraresi, C., Quaglia, G. (eds) Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-61276-8_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61276-8_89

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61275-1

  • Online ISBN: 978-3-319-61276-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics