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Abstract. Underlay device to device multicast communication brings
great benefits to cellular networks in term of energy and spectral effi-
ciency, since a group of users can communicate directly by reusing cellu-
lar resources. In this paper, we propose a scheme to maximize network
energy efficiency (EE) through transmission power control. In addition,
to get a compromise between fairness and the overall EE, we analyse
a second scheme with fairness factors to maximize minimum individual
EE. The problem is formulated as a fractional programming optimiza-
tion and solved with iterative algorithm. Two different EE metrics are
analysed via extensive numerical simulations with a spatial Poisson pro-
cess for the users’ locations, and applying different clustering algorithms
as K-nearest neighbour, distance limit and DBSCAN.

Keywords: Optimization, fractional programming, D2D multi-casting commu-
nication, 5G wireless networks.

1 Introduction

The emergence of mobile multimedia rich services increases the number of con-
nected devices and the requested data rate regularly. Consequently, the fifth
generation (5G) supposes to have 1000x higher data volume, up to 100x more
throughput and connected devices, 10x longer battery life, and low latency [8].
Underlay device to device communication (D2D) is a new paradigm introduced
to realize 5G. It allows users in proximity to communicate directly by using re-
source allocated to cellular user (CUE). This has advantages as [9]: high data
rate, energy and spectral efficiency, increase network capacity, low delay. How-
ever, it can cause harmful co-channel interference to CUE. The main techniques
to mitigate interference are power control and resource allocation. Currently,
they are joint to propose a more EE solutions. Several works proposed EE power
and resource allocation scheme subject to QoS. In [3], a centralized solution had
been conducted to minimize transmission power. The problem was formulated
as mixed integer linear programming (MILP) and solved through Hungarian al-
gorithm. While in [14], the authors proposed a distributed solution to maximize
users EE. The problem was formulated as a non cooperative game and solved



by an iterative optimization algorithm. However, these works mainly consider
unicast D2D communication where single transmitter and receiver communi-
cate. Another interesting approach is to allow users with common content in-
terest to form clusters where one device transmit to multiple receivers. This is
called multicast D2D communication(D2MD). Compared to unicast, this mode
reduces overhead signals and saves resources yet it is more challenging hence
date rate is determined according to the weakest receiver so non fails to decode
any of the transmitted data. Most of the available works target interference is-
sue in D2MD communication focus on system throughput maximization subject
to QoS constraints. The work in [5], investigate power control for D2D multi-
cast communication. The authors first proposed a distributed scheme for group
formation. Then, they studied single and multiple CUE channels re-usage and
developed power allocation scheme based on swarm algorithm (PSO). The au-
thors in [10] proposed a heuristic algorithm to solve mixed integer non-linear
programming (MINLP) resource and power allocation problem. Moreover, they
extended their work in [11] where D2D clusters can reuse the channel of multi-
ple CUE instead of reusing single orthogonal channels and several D2D groups
can share the same channel. They proposed greedy and heuristic algorithms and
compared their performance. To this end, the paramount importance of green
communication concept and the high potential of D2MD [12] motivated us to
analysis spectral and energy efficiency in the scenario where underlay D2MD is
applied in a cellular network. In this paper, we propose joint power and resource
allocation model to maximize system and users EE. However, for analytical pur-
pose we focus on a single channel sharing which lead us to EE power control
schemes powered with stochastic geometry and clustering techniques. The rest of
the paper is organized as follows. In section 2, we introduce system model. Power
control algorithm and problem formulation is discussed in section 3. Finally, we
discuss simulation results in 4 and conclude in section 5.

2 System Model

We consider a single cell environment with one base station (BS) located in the
centre and multiple uniformly distributed users. On the uplink,M CUE transmit
on M orthogonal communication channels. Reusing downlink resources requires
sophisticated coordination between UEs and the BS, and has been shown to
be less effective than uplink resource sharing. Therefore, we assume the coexis-
tence of K D2MD clusters k = 1, ...,K, that reuse the same channels allocated
to CUEs to communicate directly. Each group has head cluster (transmitter)
and |Dk| receivers where |Dk| = 1 is a unicast case [11]. Here, the BS suf-
fers from interference caused by the co-channel D2MD transmitters. Similarly,
the |Dk| receivers of group k suffer from interference caused by the CUE and
other transmitters of D2MD groups sharing the same resource block. The SINR
γk,m,r({pk}m, pm) of a D2D receiver r in group k and channel m is given by

hk,m,rpk,m
σ2 + pmβk,m,r +

∑
j 6=k xj,mpj,mhj,m,r

(1)



where hk,m,r are the deterministic link gain factors from the transmitter in group
k to receiver r on channel m, and βk,m,r is similarly the link gain factor from
CUE transmitter m to receiver r in group k. Symbol pk,m denotes the transmis-
sion power of the D2MD transmitter in group k on channel m, and pm is the
transmission power of CUE user m. For a CUE user m, the SINR is similarly
given by

γm(pk, pm) =
hmpm

σ2 +
∑
k xk,mpk,mhk,m

, m = 1, . . . ,M (2)

where hm is the link gain from user m to the base station, pm is the transmitted
power, hk,m is the link gain from the transmitter in D2D group k to the cellular
base station on channelm and xk,m are binary variables defined for k = 1, . . . ,K,
m = 1, . . . ,M as xk,m = 1 if D2D group k uses channel m, and 0 otherwise.

The normalized transmission rate (in bits/s/Hz) of CUE m is the channel
capacity rm = log2(1 + γm), for m = 1, . . . ,M . For D2MD group k, the unique
transmission rate is determined by the weakest receiver, i.e., by the receiver with
the poorest channel quality. In addition, we account explicitly for the aggregated
received rate in group k, which depends on the number of receivers per group
|Dk|. Thus,

Rk =

M∑
m=1

xk,m|Dk| min
r∈Dk

log2(1 + γk,m,r), k = 1, . . . ,K. (3)

3 Problem Formulation

The energy efficiency (EE) of a given user (in bits/Joule) can be defined as the
ratio of the achievable transmission rate and the total consumed power:

ηm ,
rm

sc,m + pm
, m = 1, . . . ,M (4)

for a CUE user; and

ζk ,
Rk

s′c,k + pk 1

, k = 1, . . . ,K. (5)

In (4)-(5), sc,m (respectively, s′c,k) is the transmitter circuit power, pm is the
power used by CUE transmitter m, pk = (pk,1, . . . , pk,M ) ∈ RM+ is the allocated
power vector of the head cluster over the M channels, and || · ||1 denotes the `1-
norm.1 We assume that pm and pk satisfy individual power constraints pk1 ≤ pk
for k = 1, . . . ,K, and pm ≤ Pm for all m. Moreover, we explicitly include the
assumption that minimum transmission rates have to be satisfied both for the
CUE and the D2MD users,

rm ≥ rm, and Rk ≥ Rk (6)
1 For vectors x ∈ Rn, the `p-norm, for any 1 ≤ p ≤ ∞, is (

∑n
i=1 |xi|

p)1/p. Hence, the
`1-norm is x1 =

∑n
i=1 |xi|, `2 is the usual Euclidean norm, and x∞ = maxi |xi|.



for all indexes k, m, where rm (resp., Rk) are the target rates of CUE (D2MD)
user m (resp., k). The above definition for energy-efficiency is user-centric. The
notation can be extended to present the global network energy efficiency (GEE)
η by considering the ratio of the aggregated rate and the total consumed powers.
More formally, if r and R are the vectors of rates for CUE and D2MD groups,
respectively, then

η ,
||r||1 + ||R||1

sc +
∑
k ||pk||1 + ||p||1

(7)

Here, sc is the total circuit power network devices. The GEE targets the total
performance of the cellular network EE. This does not depend on users devices
which might not be fair for limited battery life devices. For this reason, we in-
troduce a second performance metric for maximizing the minimum EE among
all the users in the system. The following definition captures this idea and in-
troduces the notion of fairness between users.

Definition 1. Let ω = (ω1, . . . , ωM ) ∈ RM+ and θ = (θ1, . . . , θK) ∈ RK+ be two
arbitrary weight vectors. The (ω,θ)-weighted energy efficiency (WEE) is

ψ , min{min
m

ωmηm,min
k
θkζk}. (8)

The uniform choice ω2 = θ2 = 1, gives equal weight to every user, yields max-
min fairness as the optimization criterion. With the above setting, the maximiza-
tion of the global network energy efficiency can be mathematically formulated
as (problem GEE ): solve maxp,xk∈P η, where η is equal to∑

m log2(1 + γm) +
∑
k

∑
m xk,m|Dk| log2(1 + minr γk,m,r)

sc +
∑
k ||pk||1 + ||p||1

(9)

where P is the feasible set of power vectors; namely, the set defined by the
constraints

||pk||1 ≤ pk, k = 1, . . . ,K; pm ≤ Pm, m = 1, . . .M (10)
Rk ≤ Rk, k = 1, . . . ,K; rm ≤ rm, m = 1, . . . ,m (11)
||xk||1 ≤ s ||x·,m|| ≤ r (12)

xk ∈ {0, 1}M (p,p1, . . . ,pK) ∈ R(K+1)×M
+ (13)

Here, constraints (10) bound the maximum transmission power per user;
constraints (11) are the minimum rate conditions, where the rates have been
defined previously; constraints (12) enforce the maximum split factor s for every
D2MD group and the maximum reuse factor r per subcarrier; and finally (13)
is simply the nonnegativity of all the power vectors. Clearly, (12) are the inte-
ger constraints, (11) are the coupling constraints on the transmission powers,
and the set {pk} are the coupling variables of the problem. Finally, note that
the QoS constraints (11) are user-specific. In the same fashion and subject to
the same constraints (10)-(13), the minimum-EE optimization problem can be
formulated, for fixed weight vectors, as: solve maxp∈P ψ.



To better understand the influence of D2MD communication on the network
performance, we analyze in depth a special case when M = 1 or xk,1 = 1 for all
k. This means a single CUE channel is shared among all uses D2D groups. This
will give us an idea about maximum capacity of the channel and allows us to
clearly see the impact of other system parameters. In such a case the problem
turns to a power control problem lies under the fractional optimization class (14)
where the decision part is absent, and has canonical form

max
x∈C

f(x)

g(x)
. (14)

Here, closed-form sufficient and necessary conditions for feasibility can be given,
a result adapted from [13]. For single channel case, users are re-indexed such as
0 is the CUE, |D0| = 1 is the BS and j = 1, . . . ,K are the D2D transmitters.

Theorem 1. Define γ
k
= 2rj − 1 for k = 0, . . . ,K, and the matrix

W = [W ]k,j ,

{
0, j = k
hk,jγk

hk
, j 6= k.

(15)

A solution exists iff the spectral radius of W is less than one and (I−W )−1s ≤ p
where p = [p0, . . . , pK ]T and s has elements sj = σ2γ

j
/hj.

If the problem is feasible then it can be solved by finding the unique zero of
F (λ) where a point x ∈ C solves (14) if and only if x∗ = argmaxx∈C{f(x∗) −
λ∗g(x∗)},with λ∗ being the unique zero of F (λ) = maxx∈C{f(x) − λg(x)}. To
do this, we use Dinkelbach’s algorithm [4] (presented in Algorithm 2 jointly for
GEE and MEE) to solve one convex problem in each iteration, where f(x) and
g(x) are concave and convex respectively. However, in our case the feasible set is
convex yet the numerator of (9) is non-concave thus we use a sequential convex
programming approach given by log2(1 + γ) ≥ a log2 γ + b, where

a =
γ

1 + γ
, b = log2(1 + γ)− γ

1 + γ
log2 γ (16)

Putting all pieces together, we resume the solving procedure in Algorithm 1.

4 Simulations and Results

Stochastic geometry models have been commonly used to map the network into
a collection of points over a spatial area so that its actual performance (spectral
efficiency, coverage, etc.) can be analyzed and characterized [1,2]. Here, we use
a standard homogeneous Poisson point process (PPP) distribution to determine
the number and locations of the cellular users and of the D2MD transmitters and
receivers, with density λ. The received signal or interference power is assumed to
vary due to the path loss resulting from the random spatial distribution. Specifi-
cally, the channel quality between a transmitter at y ∈ R2 is Pr = Pt·(1+|y/d0|α)



Algorithm 1 EE maximization for M = 1

1: if Problem feasible (Theorem 1) then
2: i = 0. Pick any p(0) ∈ P. If p(0) is feasible then
3: repeat
4: i = i+ 1
5: Maximize (9) or (8) with a(i)k and b(i)k

6: Set p(i)k = 2q
(i)
k , where q(i)k = argmax ψ̃i

7: Set γ̃(i)
k = γk(p

(i))

8: Update a(i)k and b(i)k with (16)
9: until convergence
10: end if

Algorithm 2 Generalized Dinkelbach’s algorithm. The case I = 1 is the simple
Dinkelbach’s algorithm.
1: ε > 0, λ = 0
2: repeat
3: x∗ = argmaxx∈C min1≤i≤I{fi(x)− λgi(x)}
4: F = mini fi(x

∗)− λgi(x∗)
5: λ = mini fi(x

∗)/gi(x
∗)

6: until F ≤ ε

where Pr is the received power, Pt is the transmitted power, d0 is a reference
distance (100m in our case), α is the path loss exponent. Also, we chose the CUE
with the best channel quality to share his RB with D2D groups [7]. This will
allow us to focus on the effect of D2MD communications without considering the
case of shared channel quality. Concerning the D2MD groups, the head cluster
and group formation were done following three different algorithms presented
and discussed in bellow. The parameters used for the numerical results reported
here are listed in Table 1 and were taken or inspired by similar works [13,14,5].

4.1 K-Nearest Neighbour clustering (KNN)

This is the first algorithm used to classify users into K disjoint groups. The
K head clusters are randomly selected among S, the set of points randomly
drawn from a homogeneous Poisson point process with density λ. The remaining
users/points in S are then are assigned to the closest group head. Finally, only
the groups that reach the target size |Dk| are retained.

Feasibility was tested for variates of λ = 50, 300 with 50 as step. The con-
straints were set to 0.2 b/s/Hz as minimum rate and 0 dBm transmission
power for 5 groups of size 2 sharing CUE channel averaged over 200 feasible
cases. Clearly, a solution exist for low λ values as 50 users and a relatively
large average distance from the head cluster (approx., 120 m) and the weak-
est receiver, which is naturally decreasing down to 40 m as the density in-
creases up to 300. The percentage of feasibility was high hence 0 infeasible



Table 1: System Parameters.
parameter values parameter values
bandwidth 100 MHz Max. tx. power [−15, 15] dBm
cell size 500m Noise power density N0 −100 dBm/Hz
Number of D2D groups [1, 11] Number of Iterations 200

Network density (λ) [50, 250] Circuit Power 10 dBm
Minimum tx. rate [0.1, 0.4] bit/Hz/s Path loss exponent 2.5

Table 2: Global and minimum EE, rate in KNN (left) and DL (right).
Min Rate GEE Avg Rate MEE Min Rate GEE Avg Rate MEE Min Rate

0.1 226.280 14.538 133.876 1.472 593.807 37.790 207.066 2.277

0.2 222.999 14.352 139.819 1.538 587.773 37.457 209.762 2.307

0.3 218.606 14.093 133.746 1.471 576.695 36.764 211.694 2.328

0.4 216.362 13.980 132.662 1.458 559.525 35.735 204.938 2.254

case appeared during test cases. The problem also continuous to be feasible
as we increase number of groups per channel yet that has opposite affect on
EE. Increasing number of users from 1 up to 11 EE decrease from 303.3774
down to 144.2761 while rate increase from 6.6283 up to 53.5086. The main
reason behind low EE is that the average consumed power increase to satisfy
minimum rate constraint under high level of interference.

Sum-rate Capacity and EE were analysed while considering a wide range of
available transmission power budget [-15,15] dBm. The minimum rate were
fixed to 0.2 b/s/Hz with 5 D2MD per channel of size 2. Figure 1 show global
and maximum minimum rate respectively for different λ. Obviously, aggre-
gate and minimum rate increases logarithmically as maximum transmission
power increase to saturates to a maximum value hence the aggregate inter-
ference level prevents further improvement in data rate. This behaviour is
confirmed by global and maximum minimum EE as illustrated in Figure 2.

Rate Constraints were tested with range of [0.1, 0.4] b/s/Hz. The number of
groups per channel was set to 5 of size 2 and maximum transmission power
0 dBm averaged over 200 feasible cases. The results are shown in Table 2.
Clearly, GEE and global rate as well as MEE and minimum rate decrease as
minimum rate level increase. This is a clear indication that setting a higher
value for the minimum transmission rates forces the devices to use propor-
tionally higher power in order to satisfy the constraint. But, since the rate
increases only logarithmically with the SINR in the low- or moderate SINR
region, these increased rates do not compensate the extra energy expendi-
ture.

4.2 Distance limited (DL)

DL algorithm follows a similar concept to KNN in that we specify the number
K of clusters to be formed in advance. Here, we introduce a new parameter
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Fig. 1: Global and Maximum Minimum rate vs. transmission power in KNN.
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Fig. 2: Global and Maximum Minimum EE vs. Transmission power in KNN.

called (dmax) which is the maximum allowed distance between a transmitter and
a receiver, specified as a fraction of the cell radius. This open the door to form
heterogeneous groups with unicast and multicast communication simultaneously.

Feasibility is analysed with different λ and dmax values. The minimum rate is
set to 0.2 bit/s/Hz and maximum allowed transmission power is 0 dBm with
5 groups. Taking an example λ = 250 and dmax ratios is [1/3, 1/10] average
group size goes from 20 down to 2 with distance between 160 m and 40
m. Clearly, having bigger group did not affect problem feasibility as we still
have 0 infeasible cases in total. The problem also continuous to be feasible
as we increase number of groups per channel yet that has opposite affect on
EE. Increasing number of users from 1 up to 11 EE decrease from 591.4391
down to 424.2723 while rate increase from 12.6849 up to 53.5086. The main
reason behind low EE is that the average consumed power increase to satisfy
minimum rate constraint under high level of interference.

Sum-rate Capacity and EE was tested in DL using similar constraints values
as KNN. We set λ = 150, 200 and 250 to ensure multicast cast communica-
tion in minimum. Vales of dmax ratio were 1/5, 1/6 and 1/7 respectively with
average group size 3. Figure 3 show global and minimum rate respectively
for different λ. Obviously,we have similar behaviour as in KNN as aggregate
rate or minimum rate increase logarithmically with maximum transmission
up to saturates point hence the aggregate interference level prevents further



 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

-15 -10 -5  0  5  10  15

T
ra

n
sm

is
si

o
n
 R

a
te

 (
b
it

/s
/H

z)

Max. Transmission Power (dBm)

150 Users
200 Users
250 Users

 0

 0.5

 1

 1.5

 2

 2.5

 3

-15 -10 -5  0  5  10  15

T
ra

n
sm

is
si

o
n
 R

a
te

 (
b
it

/s
/H

z)

Max. Transmission Power (dBm)

150 Users
200 Users
250 Users

Fig. 3: Global and Maximum Minimum Rate vs. Transmission Power in DL.
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Fig. 4: Global and Maximum Minimum EE vs.Transmission power in DL.

improvement in data rate. This behaviour is confirmed by global and max-
imum minimum EE as illustrated in Figure 4. Compared to KNN, higher
values were attained here hence we have larger groups. We notice also small
difference between values among various λ due to dmax control at this level

Rate constraints were testes with λ = 250 and dmax ratio is 1/8. The max-
imum transmission power was fixed to 0 dBm and minimum rate is in the
range of [0.1, 0.4] b/s/Hz with a step 0.1. The results are shown in Table 2.
Again, we notice similar but higher values of GEE, global rate, MEE and
minimum rate as in KNN. This confirm that setting a higher value for the
minimum transmission rates forces the devices to use higher power to satisfy
the constraint.

4.3 Density-Based Spatial Clustering of Applications with Noise

The DBSCAN algorithm [6] is used to identify dense zones by taking a reference
point and searching over its neighbourhood within a limited distance dmax. If
the density of points in this area is above a threshold, the area is identified as a
potential group. The same process is applied to neighbours until all points are
checked. If some point is not a neighbour of a group, it is regarded as a noise.
In the original version of DBSCAN, a minimum number of neighbours |Dk| is
identified to specify the core, border and noise points. Here, we follow a similar
process (but varying dmax) and declare the core point of the discovered groups
as the cluster heads.



Table 3: Global and minimum EE, rate in DBSCAN.
Min Rate GEE Avg Rate MEE Min Rate
0.1 261.4748 53.2012 89.8905 0.9886

0.2 252.3485 51.0620 83.3020 0.9152

0.3 233.2863 47.0388 79.7355 0.8715

0.4 214.7058 44.1950 67.0430 0.7149

Feasibility As in the previous cases, we start the performance analysis by as-
sessing problem feasibility for some typical densities (here, λ = 50, 100, 150)
and several dmax ratios {1/3, 1/19}. The minimum rate is set to 0.2 bit/s/Hz
and maximum allowed transmission power is 0 dBm. In contrast to the pre-
vious clustering algorithm, DBSCAN allows us either to have many groups
with moderated sizes, or few groups with large sizes. The unbalance (in the
size of its groups) appears due to the indirect control of points number per
given dense area. This fact explains why the number of infeasible cases is
significantly larger than with the other clustering techniques (e.g., a maxi-
mum of 831 not solvable cases were found). For instance, for λ = 100 and
ratio of 1/4, we had 2 D2MD groups of size 52 and a maximum distance
inside a cluster of 350 m. Reducing dmax to 1/7 yielded more reasonable
(and feasible) configurations, with 18 D2MD groups of size 3, a diameter
equal to 71 m and without infeasible instances. As the transmission power
budget decrease, some infeasible cases appear with −5 dBm and −10 dBm
whereas −15 dBm generates extremely low feasibility percentage.

Sum-rate Capacity and EE Both measures have been tested in DBSCAN
using the usual parameters for the power and rate constraints. We tried
λ = 50, 100, 150 to study the effect of density on this algorithm. For the dmax
ratio, we chose 1/5 and 1/7, with 9 and 18 as the average number of groups
and 2, 3 and 6 receivers per group, respectively. Figure 5 shows the global
EE and aggregated rate, respectively, for different λ. We notice a similar
performance to the results by the previous algorithms for the aggregate and
individual rates. Similarly, Figure 6 illustrates the minimum rate and EE.
As proven previously, each channel has limited users capacity such as EE
and minimum rate decrease while average rate increase. This can be seen
clearly as low λ values as higher MEE and minimum rate are.

Rate constraints We repeated the numerical computations for assessing how
a stricter rate constraint could change the fundamental trade-off between
rate and energy efficiency. To this end, we pick λ = 100 and a configuration
by design with 18 groups and 3 receivers per group. Now, the GEE decreases
with the minimum acceptable rate. The same pattern happens for MEE, as
detailed by Table 3.

Discussion The EE and rate curves have similar shape in all the clustering
algorithms. This means that the clustering technique is not determinant
to the fundamental performance of this type of systems, if one ignores the
practical issues of use a particular clustering technique in a real network,
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Fig. 5: Global Rate and EE vs. Transmission Power in DBSCAN.
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Fig. 6: Minimum Rate and EE vs. Transmission Power in DBSCAN.

and with a distributed implementation. Nevertheless, the performance can
be enhanced under certain conditions. The KNN algorithm is highly sensitive
to the users density, λ. Its performance improves as λ increases, and this
means a shorter distance between head cluster and the receivers. Clearly,
since this distance is explicitly controlled in DL, the performance with DL
is only slightly depending on the density. In addition, the flexibility of DL
concept makes possible to have heterogeneous groups in area and number of
UEs, and particularly the coexistence of unicast and multicast groups. Also,
DL clustering offers higher EE and transmission rates, again as a immediate
consequence of the closeness between the cluster head and a typical receiver
in its group, shorter that the average distance observed with other clustering
algorithms. The feasibility test shows that the problem can be solved for a
wider distance, yet the fraction of feasible cases is largely influenced by the
power budget.

5 Conclusion

In this paper, we proposed a general model to study global and users individual
EE in D2MD. The problem is formulated as a joint power and resource allocation,
yet for analytical tractability we limited the number of shared channel to one.
Then, optimal power control was investigated. We proposed a combined frame
work of optimization and stochastic geometry which allow us to assess a number



of performance measures as D2D coverage, global and users EE and rate, or the
capacity of a RB. The clustering algorithms do not have significant impact on EE
or rate, yet can be used to slightly improve the fundmental performance. Also,
under certain conditions a single resource block has a limited capacity where as
more users sharing the channel as the EE decrease.
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