Skip to main content

Decentralised Scheduling of Power Consumption in Micro-grids: Optimisation and Security

  • Conference paper
  • First Online:
Security of Industrial Control Systems and Cyber-Physical Systems (CyberICPS 2016)

Abstract

We consider a micro-grid architecture that is distributed in nature and reliant on renewable energy. In standard grid architectures, demand management is handled via scheduling protocols that are centrally coordinated. Centralised approaches are however computationally intensive, thus not suited to distributed grid architectures with limited computational power. We address this problem with a decentralised scheduling algorithm. In our scheduling algorithm, the alternating direction method of multipliers (ADMM) is used to decompose the scheduling problem into smaller sub problems that are solved in parallel over local computation devices, which yields an optimal solution. We show that ADMM can be used to model a scheduling solution that handles both decentralised and fully decentralised cases. As a further step, we show that false data injection attacks can be provoked by compromising parts of the communication infrastructure or a set of computing devices. In this case, the algorithm fails to converge to an optimum or converges toward a value that lends the attacker an advantage, and impacts the scheduling scheme negatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    allows the system to move forward only at the pace of the slowest LC.

References

  1. Hatziargyriou, N., Jenkins, N., Strbac, G., Lopes, J.P., Ruela, J., Engler, A., Oyarzabal, J., Kariniotakis, G., Amorim, A.: Microgrids-large scale integration of microgeneration to low voltage grids. CIGRE C6–309, pp. 1–8 (2006)

    Google Scholar 

  2. Koutsopoulos, I., Tassiulas, L.: Optimal control policies for power demand scheduling in the smart grid. IEEE J. Sel. Areas Commun. 30(6), 1049–1060 (2012)

    Article  Google Scholar 

  3. Vardakas, J., Zorba, N., Verikoukis, C.: A survey on demand response programs in smart grids: Pricing methods and optimization algorithms. IEEE Commun. Surv. Tutorials 17(1), 152–178 (2015). First quarter

    Google Scholar 

  4. Shi, W., Xie, X., Chu, C.C., Gadh, R.: Distributed optimal energy management in microgrids. IEEE Trans. Smart Grid 6(3), 1137–1146 (2015)

    Article  Google Scholar 

  5. Shi, W., Li, N., Chu, C.C., Gadh, R.: Real-time energy management in microgrids. IEEE Trans. Smart Grid PP(99), 1–11 (2015)

    Google Scholar 

  6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  7. Kraning, M., Chu, E., Lavaei, J., Boyd, S.: Message passing for dynamic network energy management. arXiv preprint arXiv:1204.1106, pp. 1–30, April 2012

  8. Kekatos, V., Giannakis, G.: Distributed robust power system state estimation. IEEE Trans. Power Syst. 28(2), 1617–1626 (2013)

    Article  Google Scholar 

  9. Gellings, C., Chamberlin, J.: Demand-side management: Concepts and methods, 2nd edn. PennWell Corporation (1993)

    Google Scholar 

  10. Zhang, Y., Gatsis, N., Giannakis, G., Zhang, Y., Gatsis, N., Giannakis, G.B.: Robust energy management for microgrids with high-penetration renewables. IEEE Trans. Sustain. Energy 4(4), 944–953 (2013)

    Article  Google Scholar 

  11. Wei, E., Ozdaglar, A.: On the O(1/k) convergence of asynchronous distributed alternating direction method of multipliers. ArXiv e-prints, July 2013

    Google Scholar 

  12. Ambassa, P.L., Wolthusen, S.D., Kayem, A.V., Meinel, C.: Robust snapshot algorithm for power consumption monitoring in computationally constrained micro-grids. In: 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), pp. 1–6, November 2015

    Google Scholar 

  13. Ambassa, P.L., Kayem, A.V.D.M., Wolthusen, S.D., Meinel, C.: Secure and reliable power consumption monitoring in untrustworthy micro-grids. In: Doss, R., Piramuthu, S., Zhou, W. (eds.) FNSS 2015. CCIS, vol. 523, pp. 166–180. Springer, Cham (2015). doi:10.1007/978-3-319-19210-9_12

    Chapter  Google Scholar 

  14. Weldehawaryat, G., Wolthusen, S.: Secure distributed demand projection in micro-grids. In: Global Information Infrastructure and Networking Symposium (GIIS), pp. 1–6, October 2015

    Google Scholar 

  15. Sou, K.C., Kordel, M., Wu, J., Sandberg, H., Johansson, K.: Energy and CO2 efficient scheduling of smart home appliances. In: 2013 European Control Conference (ECC), pp. 4051–4058, July 2013

    Google Scholar 

  16. Yang, P., Chavali, P., Gilboa, E., Nehorai, A.: Parallel load schedule optimization with renewable distributed generators in smart grids. IEEE Trans. Smart Grid 4(3), 1431–1441 (2013)

    Article  Google Scholar 

  17. Koutsopoulos, I., Tassiulas, L.: Control and optimization meet the smart power grid: Scheduling of power demands for optimal energy management. In: Proceedings of the 2nd International Conference on Energy-Efficient Computing and Networking. e-Energy 2011, pp. 41–50. ACM, New York (2011)

    Google Scholar 

  18. O’Neill, D., Levorato, M., Goldsmith, A., Mitra, U.: Residential demand response using reinforcement learning. In: 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 409–414, October 2010

    Google Scholar 

  19. Li, N., Chen, L., Low, S.: Optimal demand response based on utility maximization in power networks. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–8, July 2011

    Google Scholar 

  20. Urgaonkar, R., Urgaonkar, B., Neely, M.J., Sivasubramaniam, A.: Optimal power cost management using stored energy in data centers. In: Proceedings of the ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2011, pp. 221–232. ACM, New York (2011)

    Google Scholar 

  21. Wang, H., Huang, J.: Bargaining-based energy trading market for interconnected microgrids. In: 2015 IEEE International Conference on Communications (ICC), pp. 776–781, June 2015

    Google Scholar 

  22. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  23. Deng, W., Lai, M.J., Peng, Z., Yin, W.: Parallel multi-block ADMM with o(1/k) convergence. J. Sci. Comput. 71, 1–25 (2016)

    Google Scholar 

  24. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  25. Liu, L., Han, Z.: Multi-block ADMM for big data optimization in smart grid. In: 2015 International Conference on Computing, Networking and Communications (ICNC), pp. 556–561, February 2015

    Google Scholar 

  26. Zhang, R., Kwok, J.: Asynchronous distributed ADMM for consensus optimization. In: Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1701–1709 (2014)

    Google Scholar 

  27. Albrecht, J.R., Tuttle, C., Snoeren, A.C., Vahdat, A.: Loose synchronization for large-scale networked systems. In: USENIX Annual Technical Conference, General Track, pp. 301–314 (2006)

    Google Scholar 

  28. Mohsenian-Rad, A.H., Leon-Garcia, A.: Distributed internet-based load altering attacks against smart power grids. IEEE Trans. Smart Grid 2(4), 667–674 (2011)

    Article  Google Scholar 

  29. Li, X., Liang, X., Lu, R., Shen, X., Lin, X., Zhu, H.: Securing smart grid: cyber attacks, countermeasures, and challenges. IEEE Commun. Mag. 50(8), 38–45 (2012)

    Article  Google Scholar 

  30. Wang, W., Lu, Z.: Cyber security in the smart grid: Survey and challenges. Comput. Netw. 57(5), 1344–1371 (2013)

    Article  Google Scholar 

  31. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation in electric power grids. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 21–32. ACM, New York (2009)

    Google Scholar 

  32. Feng, Y., Foglietta, C., Baiocco, A., Panzieri, S., Wolthusen, S.D.: Malicious false data injection in hierarchical electric power grid state estimation systems. In: Proceedings of the Fourth International Conference on Future Energy Systems. e-Energy 2013, pp. 183–192. ACM, New York (2013)

    Google Scholar 

  33. Vuković, O., Dán, G.: On the security of distributed power system state estimation under targeted attacks. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC 2013, pp. 666–672. ACM, New York (2013)

    Google Scholar 

  34. Bobba, R.B., Rogers, K.M., Wang, Q., Khurana, H., Nahrstedt, K., Overbye, T.J.: Detecting false data injection attacks on DCstate estimation. In: Preprints of the First Workshop on Secure Control Systems, CPSWEEK. vol. 2010 (2010)

    Google Scholar 

  35. Monticelli, A.: Electric power system state estimation. Proc. IEEE 88(2), 262–282 (2000)

    Article  Google Scholar 

  36. Amini, S., Mohsenian-Rad, H., Pasqualetti, F.: Dynamic load altering attacks in smart grid. In: 2015 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5, February 2015

    Google Scholar 

  37. Mantooth, H.A., Liu, Y., Farnell, C., Zhang, F., Li, Q., Di, J.: Securing DC and hybrid microgrids. In: 2015 IEEE First International Conference on DC Microgrids (ICDCM), pp. 285–286, June 2015

    Google Scholar 

  38. Talebi, M., Li, C., Qu, Z.: Enhanced protection against false data injection by dynamically changing information structure of microgrids. In: IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 393–396, June 2012

    Google Scholar 

  39. Sandberg, H., Teixeira, A., Johansson, K.H.: On security indices for state estimators in power networks. In: 2010 First Workshop on Secure Control Systems (SCS), Stockholm, pp. 1–6 (2010)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the joint SANCOOP Programme of the Research Council (NRC) of Norway and the National Research Foundation of South Africa (NRF) under the NRF grant 237817. The authors gratefully thank the anonymous referees for their review comments that helped improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goitom K. Weldehawaryat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Weldehawaryat, G.K., Ambassa, P.L., Marufu, A.M.C., Wolthusen, S.D., Kayem, A.V.D.M. (2017). Decentralised Scheduling of Power Consumption in Micro-grids: Optimisation and Security. In: Cuppens-Boulahia, N., Lambrinoudakis, C., Cuppens, F., Katsikas, S. (eds) Security of Industrial Control Systems and Cyber-Physical Systems. CyberICPS 2016. Lecture Notes in Computer Science(), vol 10166. Springer, Cham. https://doi.org/10.1007/978-3-319-61437-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61437-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61436-6

  • Online ISBN: 978-3-319-61437-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics