Abstract
In this paper we define and axiomatise finitely additive probability measures for events described by formulas in Gödel\(_\varDelta \) (G\(_\varDelta \)) propositional logic. In particular we show that our axioms fully characterise finitely additive probability measures over the free finitely generated algebras in the variety constituting the algebraic semantics of G\(_\varDelta \) as integrals of elements of those algebras (represented canonically as algebras of [0, 1]-valued functions), with respect to Borel probability measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguzzoli, S., Bianchi, M., Valota, D.: A note on drastic product logic. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014. CCIS, vol. 443, pp. 365–374. Springer, Cham (2014). doi:10.1007/978-3-319-08855-6_37
Aguzzoli, S., Codara, P.: Recursive formulas to compute coproducts of finite Gödel algebras and related structures. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). pp. 201–208 (2016)
Aguzzoli, S., D’Antona, O.M., Marra, V.: Computing minimal axiomatizations in Gödel propositional logic. J. Log. Comput. 21, 791–812 (2011)
Aguzzoli, S., Gerla, B.: Probability measures in the logic of nilpotent minimum. Stud. Log. 94(2), 151–176 (2010)
Aguzzoli, S., Gerla, B., Marra, V.: De Finetti’s no-Dutch-book criterion for Gödel logic. Stud. Logica 90, 25–41 (2008)
Aguzzoli, S., Gerla, B., Marra, V.: Defuzzifying formulas in Gödel logic through finitely additive measures. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), pp. 1886–1893 (2008)
Baaz, M.: Infinite-valued Gödel logics with \(0\)-\(1\)-projections and relativizations. In: Hájek, P. (ed.) Gödel’96: Logical foundations of mathematics, computer science and physics–Kurt Gödel’s legacy, Brno, Czech Republic, August 1996, proceedings. Lecture Notes in Logic, vol. 6, pp. 23–33. Springer-Verlag, Berlin (1996)
Blok, W., Pigozzi, D.: Algebraizable logics, Memoirs of The American Mathematical Society, vol. 77. American Mathematical Society (1989)
Cintula, P., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic, vol. 1, 2, 3. College Publications, London (2011)
Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4. Kluwer Academic Publishers, Dordrecht (1998)
Mundici, D.: Averaging the truth-value in Łukasiewicz logic. Stud. Logica 55(1), 113–127 (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Aguzzoli, S., Bianchi, M., Gerla, B., Valota, D. (2017). Probability Measures in Gödel\(_\varDelta \) Logic. In: Antonucci, A., Cholvy, L., Papini, O. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2017. Lecture Notes in Computer Science(), vol 10369. Springer, Cham. https://doi.org/10.1007/978-3-319-61581-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-61581-3_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61580-6
Online ISBN: 978-3-319-61581-3
eBook Packages: Computer ScienceComputer Science (R0)