Skip to main content

The Descriptive Complexity of Bayesian Network Specifications

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10369))

  • 594 Accesses

Abstract

We adapt the theory of descriptive complexity to Bayesian networks, by investigating how expressive can be specifications based on predicates and quantifiers. We show that Bayesian network specifications that employ first-order quantification capture the complexity class \(\mathsf {PP}\); that is, any phenomenon that can be simulated with a polynomial time probabilistic Turing machine can be also modeled by such a network. We also show that, by allowing quantification over predicates, the resulting Bayesian network specifications capture the complexity class \(\mathsf {PP}^\mathsf {NP}\), a result that does not seem to have equivalent in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Halpern, J.Y.: Decidability and expressiveness for first-order logics of probability. Inf. Comput. 112(1), 1–36 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cozman, F.G., Mauá, D.D.: Bayesian networks specified using propositional and relational constructs: Combined, data, and domain complexity. In: AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  3. Cozman, F.G., Polastro, R.B.: Complexity analysis and variational inference for interpretation-based probabilistic description logics. In: Conference on Uncertainty in Artificial Intelligence, pp. 117–125 (2009)

    Google Scholar 

  4. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  5. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, Cambridge (1972)

    MATH  Google Scholar 

  6. Gaifman, H.: Concerning measures on first-order calculi. Isr. J. Math. 2, 1–18 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  7. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  8. Grädel, E.: Finite model theory and descriptive complexity. In: Grädel, E. (ed.) Finite Model Theory and its Applications, pp. 125–229. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Grädel, E.E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y., Weinstein, S.: Finite Model Theory and its Applications. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  10. Jaeger, M.: Lower complexity bounds for lifted inference. Theor. Pract. Logic Program. 15(2), 246–264 (2014)

    Article  MathSciNet  Google Scholar 

  11. Koller, D., Friedman, N., Models, P.G.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  12. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  13. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  14. Poole, D.: Probabilistic programming languages: independent choices and deterministic systems. In: Dechter, R., Geffner, H., Halpern, J.Y. (eds.) Heuristics, Probability and Causality - A Tribute to Judea Pearl, pp. 253–269. College Publications, London (2010)

    Google Scholar 

  15. De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  16. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.: Probabilistic Inductive Logic Programming. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  17. Saluja, S., Subrahmanyam, K.V.: Descriptive complexity of #P functions. J. Comput. Syst. Sci. 50, 493–505 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Van den Broeck, G.: On the completeness of first-order knowledge compilation for lifted probabilistic inference. In: Neural Processing Information Systems, pp. 1386–1394 (2011)

    Google Scholar 

  19. Wagner, K.W.: The complexity of combinatorial problems with succinct input representation. Acta Informatica 23, 325–356 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is partially supported by CNPq, grant 308433/2014-9. This paper was partially funded by FAPESP grant #2015/21880-4 (project Proverbs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio G. Cozman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cozman, F.G., Mauá, D.D. (2017). The Descriptive Complexity of Bayesian Network Specifications. In: Antonucci, A., Cholvy, L., Papini, O. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2017. Lecture Notes in Computer Science(), vol 10369. Springer, Cham. https://doi.org/10.1007/978-3-319-61581-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61581-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61580-6

  • Online ISBN: 978-3-319-61581-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics