Skip to main content

Computational Color Imaging

  • Chapter
  • First Online:
  • 1789 Accesses

Abstract

Color quality and fidelity are fundamental considerations in today’s digital imaging systems. Optimization of a color imaging system is a multifaceted problem involving deep understanding of device physics, light-surface interactions, human visual perception, and computational mathematics. The design of a successful color imaging system that meets the desired performance, reliability and cost evokes many interesting and challenging optimization problems. This chapter explores a variety of optimization frameworks that have been developed for color capture, display, and printing. For each device genre, a broad introduction to challenges in color imaging is first presented, followed by a detailed exposition of selected optimization problems and their solutions. Practical considerations such as computational cost, noise containment, and power consumption are introduced as mathematical constraints into the given optimization problem. The chapter concludes with suggestions for future work in this domain.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    P RGBW is a unit-less measurement for comparing the relative power consumption for different RGBW pixel values. According to an experiment in [49], an OLED display in a mobile device consumes approximately 30 ∼ 70% of power during a web browsing operation. Therefore, if we save 30% of power P RGBW for the device, at most 9 ∼ 21% of total power is saved (with equivalently prolonged battery life).

References

  1. Hunt R (2004) The reproduction of color. Wiley, New York

    Book  Google Scholar 

  2. Bala R (2003) Device characterization. Digital color imaging handbook: Chap. 5, 687–725 (2003)

    Google Scholar 

  3. Bala R, Sharma G, Monga V, Van de Capelle JP (2005) Two-dimensional transforms for device color correction and calibration, IEEE Trans Image Proc 14(8):1172–1186

    Article  Google Scholar 

  4. Kang HR (1997) Color technology for electronic devices. SPIE Press

    Google Scholar 

  5. Emmel P (2003) Chapter 3: Physical models for color prediction in Digital Color Imaging Handbook. CRC Press

    Google Scholar 

  6. Bala R, Klassen V (2003) Efficient color transformation implementation. Digital Color Imaging Handbook: Chap. 11, 687–725

    Google Scholar 

  7. Finlayson G, Darrodi MM, Mackiewicz M (2016) Rank-based camera spectral sensitivity estimation. J Opt Soc Am A 33(4):589–599

    Article  Google Scholar 

  8. Green F (2010) Color Management: Understanding and Using ICC Profiles. Wiley, New York

    Book  Google Scholar 

  9. Ramanath R, Snyder W, Yoo Y, Drew M (2005) Color image processing pipeline. Signal Process Mag IEEE 22(1):34–43

    Article  Google Scholar 

  10. West G, Brill M (1982) Necessary and sufficient conditions for von Kries chromatic adaption to give colour constancy. J Math Biol 15:249–258

    Article  MathSciNet  MATH  Google Scholar 

  11. Vrhel MJ, Trussell HJ (1998) The mathematics of color calibration. ICIP (1), pp 181–185

    Google Scholar 

  12. Wyszecki G, Stiles W (1982) Color science: concepts and methods, quantitative data and formulas, 2nd ed. Wiley, New York

    Google Scholar 

  13. Multimedia Systems and Equipment–Colour Measurement and Management–Part 2-1: Colour Management–Default RGB Colour Space sRGB (1999) IEC 61966 2-1:1999

    Google Scholar 

  14. Foster DH, Amano K, Nascimento SMC, Foster MJ (2006) Frequency of metamerism in natural scenes. J Opt Soc Am A 23(10):2359–2372

    Article  Google Scholar 

  15. Darrodi MM, Finlayson G, Goodman T, Mackiewicz M (2015) Reference data set for camera spectral sensitivity estimation. J Opt Soc Am A 32(3):381–391

    Article  Google Scholar 

  16. Maloney L (1986) Evaluation of linear models of surface spectral reflectance with small numbers of parameters. J Opt Soc Am A 3:1673–1683

    Article  Google Scholar 

  17. Parkkinen J, Hallikanen J, Jaaskelainen T (1989) Characteristic spectra of munsell colors. J Opt Soc Am A 6:318–322

    Article  Google Scholar 

  18. Vrhel M, Trussel H (1992) Color correction using principal components. Color Res Appl 17:328–338, 1992.

    Article  Google Scholar 

  19. D. Marimont, B. Wandell (1992) Linear models of surface and illuminant spectra. J Opt Soc Am A 9(11):1905–1913

    Article  Google Scholar 

  20. Funt B, Jiang H (2003) Nondiagonal color correction. In: Proceedings on IEEE international conference on image processing, vol 1, pp I–481–4

    Google Scholar 

  21. Finlayson GD, Funt BV, Jiang H (2003) Predicting cone quantum catches under illumination change. In: The 11th color imaging conference, pp 170–174

    Google Scholar 

  22. Fraleigh J, Beauregard A (1995) Linear algebra, 3rd ed. Addison Wesley

    MATH  Google Scholar 

  23. Burns PD, Berns RS (1998) Image noise and colorimetric precision in multispectral image capture. In: Proc 6th IS&T/SID color imaging conference, IS&T, pp 83–85

    Google Scholar 

  24. Finlayson GD, Mackiewicz M, Hurlbert A (2015) Color correction using root-polynomial regression. IEEE Trans Image Process 24(5): 1460–1470

    Article  MathSciNet  Google Scholar 

  25. Hong G, Luo MR, Rhodes PA (2001) A study of digital camera colorimetric characterization based on polynomial modeling. Color Res Appl 26(1):76–84

    Article  Google Scholar 

  26. Barnard K, Cardei VC, Funt BV (2002) A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data. IEEE Trans Image Process 11(9):972–984

    Article  Google Scholar 

  27. Jiang J, Liu D, Gu J, Süsstrunk S (2013) What is the space of spectral sensitivity functions for digital color cameras. In: Workshop on the applications of computer vision. IEEE Computer Society, pp 168–179

    Google Scholar 

  28. Andersen CF, Hardeberg JY (2005) Colorimetric characterization of digital cameras preserving hue planes. In: 13th color and imaging conference, pp 141–146

    Google Scholar 

  29. Mackiewicz M, Andersen CF, Finlayson G (2015) Hue plane preserving colour correction using constrained least squares regression. In: 23rd color and imaging conference, pp 18–23

    Google Scholar 

  30. McElvain JS, Gish W (2013) Camera color correction using two-dimensional transforms. In: 21st color and imaging conference, pp 250–256

    Google Scholar 

  31. Finlayson G, Drew M, Funt B (1994) Spectral sharpening: Sensor transformations for improved color constancy. J Opt Soc Am A 11(5):1553–1563

    Article  Google Scholar 

  32. Buchsbaum G, Gottschalk A (1983) Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc R Soc Lond B 220:89–113

    Article  Google Scholar 

  33. Gershon R, Jepson A, Tsotsos J (1998) From [r, g, b] to surface reflectance: Computing color constant descriptors in images. Perception, 755–758

    Google Scholar 

  34. van de Weijer J, Gevers T, Gijsenij A (2007) Edge-based color constancy. IEEE Trans Image Process 16(9):2207–2214

    Article  MathSciNet  Google Scholar 

  35. Finlayson GD, Trezzi E (2004) Shades of gray and colour constancy. In: 12th color imaging conference, pp 37–41

    Google Scholar 

  36. Chakrabarti A, Hirakawa K, Zickler T (2008) Color constancy beyond bags of pixels. In: IEEE conference on computer vision and pattern recognition

    Book  Google Scholar 

  37. Cheng, D, Prasad DK, Brown MS (2014) Illuminant estimation for color constancy: Why spatial-domain methods work and the role of the color distribution. J Opt Soc Am A 31(5):1049–1058. May 2014. [Online]. Available: http://josaa.osa.org/abstract.cfm?URI=josaa-31-5-1049

  38. Barron JT (2015) Convolutional color constancy. In: 2015 IEEE international conference on computer vision, pp 379–387

    Google Scholar 

  39. Bianco S, Cusano C, Schettini R (2015) Color constancy using CNNs. In: 2015 IEEE conference on computer vision and pattern recognition workshops, Boston, MA, USA, June 7–12, 2015, pp 81–89. [Online]. Available: http://dx.doi.org/10.1109/CVPRW.2015.7301275

  40. Shi W, Loy CC, Tang X (2016) Deep specialized network for illuminant estimation. In Computer vision – ECCV 2016 – 14th european conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV, pp 371–387

    Google Scholar 

  41. Finlayson GD (2013) Corrected-moment illuminant estimation. In: IEEE International conference on computer vision, ICCV 2013, Sydney, Australia, December 1–8, 2013, pp 1904–1911

    Google Scholar 

  42. Finlayson GD, Schaefer G (2001) Solving for colour constancy using a constrained dichromatic reflection model. Int J Comput Vis 42(3):127–144

    Article  MATH  Google Scholar 

  43. Tan RT, Nishino K, Ikeuchi K (2003) Illumination chromaticity estimation using inverse-intensity chromaticity space. In: IEEE conference on computer vision and pattern recognition, pp 673–682

    Google Scholar 

  44. Barnard K, Martin L, Coath A, Funt BV (2002) A comparison of computational color constancy algorithms. II. Experiments with image data. IEEE Trans Image Process 11(9):985–996

    Article  Google Scholar 

  45. Gijsenij A, Gevers T, van de Weijer J (2011) Computational color constancy: Survey and experiments. IEEE Trans Image Process 20(9):2475–2489

    Article  MathSciNet  MATH  Google Scholar 

  46. Montojo J (2009) Face-based chromatic adaptation for tagged photo collections. University of Toronto

    Google Scholar 

  47. Bianco S, Schettini R (2012) Color constancy using faces. In: IEEE IEEE conference on computer vision and pattern recognition, pp 65–72

    Google Scholar 

  48. Lee C, Lee C, Lee Y-Y, Kim C-S (2012) Power-constrained contrast enhancement for emissive displays based on histogram equalization. IEEE Trans Image Process 21(1):80–93

    Article  MathSciNet  MATH  Google Scholar 

  49. Carroll A, Heiser G (2010) An analysis of power consumption in a smartphone. In: Proc USENIX Ann Technical Conf, Jun 2010 pp. 1–14

    Google Scholar 

  50. Lee C, Kim J-H, Lee C, Kim C-S (2014) Optimized brightness compensation and contrast enhancement for transmissive liquid crystal displays. IEEE Trans Circuits Syst Video Technol 24(4): 576–590

    Article  MathSciNet  Google Scholar 

  51. Lee C, Monga V (2016) Power-constrained RGB-to-RGBW conversion for emissive displays: Optimization-based approaches. IEEE Trans Circuits Syst Video Technol 26(10):1821–1834

    Article  Google Scholar 

  52. Cowan WB (1983) An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates. SIGGRAPH Comput Graph 17(3):315–321

    Article  Google Scholar 

  53. Berns RS, Motta RJ, Gorzynski ME (1993) CRT colorimetry. Part I: Theory and practice. Color Res Appl 18(5):299–314

    Article  Google Scholar 

  54. Sharma G (ed) (2002) Digital color imaging handbook. CRC Press, Boca Raton, FL

    Google Scholar 

  55. Marcu GG, Chen W, Chen K, Graffagnino P, Andrade O (2001) Color characterization issues for TFTLCD displays. In: Proc. SPIE color imaging: device-independent color, color hardcopy, and applications VII, vol 4663, pp 187–198

    Google Scholar 

  56. Sharma G (2001) Comparative evaluation of color characterization and gamut of LCD versus CRTs. In: Proc SPIE color imaging: device-independent color, color hardcopy, and applications VII, vol 4663, pp 177–186

    Article  Google Scholar 

  57. Kwak Y, Li C, MacDonald L (2003) Controling color of liquid-crystal displays. J Soc Inf Display 11(2):341–348

    Article  Google Scholar 

  58. Gong R, Xu H, Tong Q (2012) Colorimetric characterization models based on colorimetric characteristics evaluation for active matrix organic light emitting diode panels. Appl Opt 51(30): 7255–7261

    Article  Google Scholar 

  59. Sun P-L, Luo RM (2013) Color characterization models for OLED displays. In: SID symp dig tech papers, pp 1453–1456

    Google Scholar 

  60. Lai C-C, Tsai C-C (2007) A modified stripe-RGBW TFT-LCD with image-processing engine for mobile phone displays. IEEE Trans Consum Electron 53(4):1628–1633

    Article  Google Scholar 

  61. Kwon KJ, Kim YH (2012) Scene-adaptive RGB-to-RGBW conversion using retinex theory-based color preservation. J Display Technol 8(12):684–694

    Article  Google Scholar 

  62. Lee S, Kim C, Seo Y, Hong C (2002) Color conversion from RGB to RGB+White while preserving hue and saturation. In: Proc. IS&T/SID color imag Conf, pp 287–291

    Google Scholar 

  63. Wang L, Tu Y, Chen L, Teunissen K, Heynderickx I (2007) Trade-off between luminance and color in RGBW displays for mobile-phone usage. In: SID symp dig tech papers, pp 1142–1145

    Google Scholar 

  64. Miller ME, Murdoch MJ (2009) RGB-to-RGBW conversion with current limiting for OLED displays. J Soc Inf Display 17(3):195–202

    Article  Google Scholar 

  65. Can C, Underwood I (2013) Compact and efficient RGB to RGBW data conversion method and its application in OLED microdisplays. J Soc Inf Display 21(3):109–119

    Article  Google Scholar 

  66. Kwak Y, Park J, Park D-S, Park JB (2008) Generating vivid colors on red-green-blue-white electronic-paper display. Appl Opt 47(25):4491–4500

    Article  Google Scholar 

  67. Flohr TJ, Kolpatzik BW, Balasubramanian R, Carrara DA, Bouman CA, Allebach JP (1993) Model based color image quantization. In: Proc SPIE human vision, visual processing, and digital display IV, vol 1913, pp 270–281

    Article  Google Scholar 

  68. Dong M, Zhong L (2012) Power modeling and optimization for OLED displays. IEEE Trans Mobile Comput 11(9):1587–1599

    Article  Google Scholar 

  69. Xiong Y, Wang L, Xu W, Zou J, Wu H, Xu Y, Peng J, Wang J, Cao Y, Yu G (2009) Performance analysis of PLED based flat panel display with RGBW sub-pixel layout. Org Electron 10(5):857–862

    Article  Google Scholar 

  70. Dong M, Zhong L (2012) Chameleon: A color-adaptive web browser for mobile OLED displays. IEEE Trans Mobile Comput 11(5): 724–738

    Article  Google Scholar 

  71. Wyszecki G, Stiles WS (2000) Color science: concepts and methods, quantitative data and formulae, 2nd ed. Wiley, New York

    Google Scholar 

  72. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd ed. Springer, New York

    MATH  Google Scholar 

  73. Kodak Lossless True Color Image Suite. [Online]. Available: http://r0k.us/graphics/kodak/

  74. Amidror I (2002) Scattered data interpolation methods for electronic imaging systems: A survey. J Electron Imaging 11(2):157–176

    Article  Google Scholar 

  75. Lee D, Schachter B (1980) Two algorithms for constructing a delaunay triangulation. Int J Comput Inf Sci 9(3):219–242

    Article  MathSciNet  MATH  Google Scholar 

  76. Monga V, Bala R (2008) Sort-select-damp: An efficient strategy for color look-up-table lattice design. SID/IS&T color imaging conference, Society for Imaging Science and Technology, pp 247–253

    Google Scholar 

  77. Chang JZ, Allebach JP, Bouman CA (1997) Sequential linear interpolation of multidimensional functions. IEEE Trans Image Process, 1231–1245

    Google Scholar 

  78. Monga V, Bala R, Mo X (2012) Design and optimization of color lookup tables on a simplex topology. IEEE Trans Image Process 21(4): 1981–1996

    Article  MathSciNet  MATH  Google Scholar 

  79. Balasubramanian R, Maltz M (1996) Refinement of printer transformations using weighted regression. In: Proc. SPIE color imaging: processing, hardcopy and applications, Mar 1996

    Google Scholar 

  80. Garcia E, Gupta M (2012) Optimized regression for efficient function evaluation. IEEE Trans Image Process 21(9):4128–4140

    Article  MathSciNet  MATH  Google Scholar 

  81. Gersho A, Gray R (1990) Vector quantization and signal compression. Springer

    Google Scholar 

  82. Jin X, Han J (2010) K-means clustering. Springer, Boston, MA, pp 563–564

    Google Scholar 

  83. Garcia EK, Gupta MR (2009) Building accurate and smooth ICC profiles by lattice regression. SID/IS&T color imaging conference

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Bala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bala, R., Finlayson, G., Lee, C. (2018). Computational Color Imaging. In: Monga, V. (eds) Handbook of Convex Optimization Methods in Imaging Science. Springer, Cham. https://doi.org/10.1007/978-3-319-61609-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61609-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61608-7

  • Online ISBN: 978-3-319-61609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics