Abstract
Over the past decade, sparsity has emerged as a dominant theme in signal processing and big data applications. In this chapter, we formulate and solve new flavors of sparsity-constrained optimization problems built on the family of spike-and-slab priors. First, we develop an efficient Iterative Convex Refinement solution to the hard non-convex problem of Bayesian signal recovery under sparsity-inducing spike-and-slab priors. We also offer a Bayesian perspective on sparse representation-based classification via the introduction of class-specific priors. This formulation represents a consummation of ideas developed for model-based compressive sensing into a general framework for sparse model-based classification.
Similar content being viewed by others
Notes
- 1.
The Matlab code for ICR is available online at http://signal.ee.psu.edu/ICR/ICRpage.htm
References
Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed Problems. Winston, New York
Candès EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math 59(8):1207–1223
Donoho FL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627
Fodor IK, Kamath C (2003) Denoising through wavelet shrinkage: An empirical study. J Elec Imag 12(1):151–160
Coifman RR, Donoho DL (1995) Translation-invariant de-noising. In: Wavelets and statistics. Lecture Notes in Statistics Series, vol 103. Springer, pp 125–150
Simoncelli EP (1999) Bayesian denoising of visual images in the wavelet domain. In: Bayesian inference in wavelet-based models. pp 291–308, Springer
Deledalle C-A, Denis L, Tupin F (2009) Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 18(12):2661–2672
Romberg JK, Choi H, Baraniuk RG (2001) Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Trans Image Process 10(7):1056–1068
Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745
Dong W, Li X, Zhang L, Shi G (2011) Sparsity-based image denoising via dictionary learning and structural clustering. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 457–464
Guillemot C, Le Meur O (2014) Image inpainting: Overview and recent advances. IEEE Signal Process Mag 31(1):127–144
Bertalmio M, Sapiro G, Caselles V, Ballester C (2000) Image inpainting. In: Proc ACM Conf Comput Graph Interactive Tech. ACM, pp 417–424
Telea A (2004) An image inpainting technique based on the fast marching method. J Graphics Tools 9(1):23–34
Liang L, Liu C, Xu Y-Q, Guo B, Shum H-Y (2001) Real-time texture synthesis by patch-based sampling. ACM Trans Graph 20(3):127–150
Guleryuz OG (2006) Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: Theory. IEEE Trans Image Process 15(3):539–554
Li X (2011) Image recovery via hybrid sparse representations: A deterministic annealing approach. IEEE J Sel Topics Signal Process 5(5):953–962
Starck J-L, Elad M, Donoho DL (2005) Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process 14(10):1570–1582
Kim SP, Bose NK, Valenzuela HM (1990) Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Trans Acoust, Speech, Signal Process 38(6):1013–1027
Freeman WT, Jones TR, Pasztor EC (2002) Example-based super-resolution. IEEE Comput Graph Appln 22(2):56–65
Farsiu S, Robinson MD, Elad M, Milanfar P (2004) Fast and robust multiframe super resolution. IEEE Trans Image Process 13(10):1327–1344
Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: A technical overview. IEEE Signal Process Mag 20(3):21–36
Tappen MF, Russell BC, Freeman WT (2003) Exploiting the sparse derivative prior for super-resolution and image demosaicing. In: IEEE Workshop on Statistical and Computational Theories of Vision
Fattal R (2007) Image upsampling via imposed edge statistics. ACM Trans. Graph. 26(3). Article No. 95. http://doi.acm.org/10.1145/1276377.1276496
Dai S, Han M, Xu W, Wu Y, Gong Y (2007) Soft edge smoothness prior for alpha channel super resolution. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8
Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8
Yang J, Wright J, Huang T, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873
Yang J, Wang Z, Lin Z, Cohen S, Huang T (2012) Coupled dictionary training for image super-resolution. IEEE Trans Image Process 21(8): 3467–3478
Zeyde R, Elad M, Protter M (2012) On single image scale-up using sparse-representations. In: Curves and Surfaces. Springer, pp 711–730
Timofte R, De Smet V, Van Gool L (2013) Anchored neighborhood regression for fast example-based super-resolution. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1920–1927
Timofte R, De Smet V, Van Gool L (2014) A+: Adjusted anchored neighborhood regression for fast super-resolution. In: Proc Asian Conf Comput Vision, pp 111–126
Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Machine Intell 31(2):210–227
Taubman DS, Marcellin MW (2001) JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic, Norwell, MA
Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–609
Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509
Lustig M, Donoho DL, Pauly JL (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 58: 1182–1195
Kreutz-Delgado K, Murray JF, Rao BD, Engan K, Lee T-W, Sejnowski TJ (2003) Dictionary learning algorithms for sparse representation. Neural Comput 15(2):349–396
Sprechmann P, Ramirez I, Sapiro G, Eldar YC (2011) C-HiLasso: A collaborative hierarchical sparse modeling framework. IEEE Trans Signal Process 59(9):4183–4198
Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2015) Structured sparse priors for image classification. IEEE Trans Image Process 24(6):1763–1776
Mousavi HS, Srinivas U, Monga V, Suo Y, Dao M, Tran TD (2014) Multi-task image classification via collaborative, hierarchical spike-and-slab priors. In: Proc IEEE Int Conf Image Process, pp 4236–4240
Suo Y, Dao M, Tran T, Mousavi H, Srinivas U, Monga V (2014) Group structured dirty dictionary learning for classification. In: Proc IEEE Int Conf Image Process, pp 150–154
Anaraki FP, Hughes SM (2013) Compressive K-SVD. In: Proc IEEE Int Conf Acoust, Speech, Signal Process. pp 5469–5473
Sadeghi, M Babaie-Zadeh M, Jutten C (2013) Dictionary learning for sparse representation: A novel approach. IEEE Signal Process Lett 20(12): 1195–1198
Gorodnitsky IF, Rao BD (1997) Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans Signal Process 45(3):600–616
Wright SJ, Nowak RD, Figueiredo MA (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479–2493
Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666
Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745
Andersen MR, Winther O, Hansen LK (2014) Bayesian inference for structured spike and slab priors. In: Adv Neural Inf Process Syst, pp 1745–1753
Srinivas U, Mousavi HS, Monga V, Hattel A, Jayarao B (2014) Simultaneous sparsity model for histopathological image representation and classification.” IEEE Trans Med Imag 33(5): 1163–1179
Baraniuk RG (2007) Compressive sensing. IEEE Signal Process Mag 24(4):118–121
Tibshirani R (2011) Regression shrinkage and selection via the Lasso: A retrospective. J R Stat Soc Ser B (Methodological) 73(3):273–282
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodological) 58(1):267–288
Donoho DL (2006) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829
Becker S, Bobin J, Candès EJ (2011) Nesta: A fast and accurate first-order method for sparse recovery. SIAM J Imag Sci 4(1):1–39
Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted L1 minimization. J Fourier Anal Appl 14(5–6):877–905
Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B (Methodological) 68(1):49–67
Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Methodological) 67(2):301–320
Zou H (2006) The adaptive lasso and its oracle properties. J Amer Stat Assoc 101(476):1418–1429
Zou H, Zhang HH (2009) On the adaptive elastic-net with a diverging number of parameters. Ann Stat 37(4):1733–1751
Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused Lasso. J R Stat Soc Ser B (Methodological) 67(1):91–108
Yuan M, Lin Y (2007) Model selection and estimation in the gaussian graphical model. Biometrika 94(1):19–35
Candes E, Tao T (2007) The dantzig selector: Statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351
Tibshirani RJ, Hoefling H, Tibshirani R (2011) Nearly-isotonic regression. Technometrics 53(1):54–61
Candes EJ, Tao T (2010) The power of convex relaxation: Near-optimal matrix completion. IEEE Trans Inf Theory 56(5):2053–2080
Mazumder R, Hastie T, Tibshirani R (2010) Spectral regularization algorithms for learning large incomplete matrices. J Mach Learn Res 11(Aug): 2287–2322
Mousavi A, Maleki A, RG Baraniuk (2013) Asymptotic analysis of LASSOs solution path with implications for approximate message passing. arXiv preprint arXiv:1309.5979
Mohimani H, Babaie-Zadeh M, Jutten C (2009) A fast approach for overcomplete sparse decomposition based on smoothed norm. IEEE Trans Signal Process 57(1):289–301
Wipf DP, Rao BD (2004) Sparse Bayesian learning for basis selection. IEEE Trans Signal Process 52(8):2153–2164
Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Trans Signal Process 56(6):2346–2356
Lu X, Wang Y, Yuan Y (2013) Sparse coding from a Bayesian perspective. IEEE Trans Neur Netw Learn Sys 24(6):929–939
Dobigeon N, Hero AO, Tourneret J-Y (2009) Hierarchical bayesian sparse image reconstruction with application to MRFM. IEEE Trans Image Process 18(9):2059–2070
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1):1–122
Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202
Tropp JA (2006) Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Processing 86(3):589–602
Baraniuk RG, Cevher V, Duarte MF, Hegde C (2010) Model-based compressive sensing. IEEE Trans Image Process 56(4):1982–2001
He L, Carin L (2009) Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Trans Signal Process 57(9):3488–3497
Babacan S, Molina R, Katsaggelos A (2010) Bayesian compressive sensing using Laplace priors. IEEE Trans Image Process 19(1):53–63
Suo Y, Dao M, Tran T, Srinivas U, Monga V (2013) Hierarchical sparse modeling using spike and slab priors. In: Proc IEEE Int Conf Acoust, speech, Signal Process. pp 3103–3107
Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2013) Structured sparse priors for image classification. In: Proc IEEE Int Conf Image Process, pp 3211–3215
Jenatton R, Audibert J-Y, Bach F (2011) Structured variable selection with sparsity-inducing norms. J Mach Learn Res 12:2777–2824
Huang J, Zhang T, Metaxas D (2011) Learning with structured sparsity. J Mach Learn Res 12: 3371–3412
Huang J, Zhang T et al (2010) The benefit of group sparsity. Ann Stat 38(4):1978–2004
Cotter SF, Rao BD, Engan K, Kreutz-Delgado K (2005) Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process 53(7):2477–2488
Eldar YC, Rauhut H (2010) Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans Inf Theory 56(1):505–519
Yen T-J (2011) A majorization–minimization approach to variable selection using spike and slab priors. Ann Stat 39(3):1748–1775
Cevher V, Indyk P, Carin L, Baraniuk RG (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103
Cevher V (2009) Learning with compressible priors. In: Adv Neural Inf Process Syst, pp 261–269
Cevher V, Indyk P, Carin L, Baraniuk RG (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103
Mitchell TJ, Beauchamp JJ (1988) Bayesian variable selection in linear regression. J Amer Stat Assoc 83(404):1023–1032
George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Amer Stat Assoc 88(423):881–889
Ishwaran H, Rao JS (2005) Spike and slab variable selection: Frequentist and Bayesian strategies. Ann Stat 730–773
Carvalho CM, Chang J, Lucas JE, Nevins JR, Wang Q, West M (2008) High-dimensional sparse factor modeling: Applications in gene expression genomics. J Amer Stat Assoc 103(484): 1438–1456
Titsias MK, Lázaro-Gredilla M (2011) Spike and slab variational inference for multi-task and multiple kernel learning. In: Adv Neural Inf Process Syst, pp 2339–2347
Hernández-Lobato JM, Hernández-Lobato D, Suárez A (2014) Expectation propagation in linear regression models with spike-and-slab priors. Machine Learning pp 1–51
Hernández-Lobato D, Hernández-Lobato JM, Dupont P (2013) Generalized spike-and-slab priors for bayesian group feature selection using expectation propagation. J Mach Learn Res 14(1):1891–1945
Kappen HJ, Gómez V (2014) The variational garrote. Machine Learning 96(3):269–294
Vila J, Schniter P (2011) Expectation-maximization Bernoulli-Gaussian approximate message passing. In: Proc IEEE Asilomar Conf Signal, Syst, Comput, pp 799–803
Mousavi, HS, Monga V, Tran TD (2015) Iterative convex refinement for sparse recovery. IEEE Signal Process Lett 22(11):1903–1907
Chouzenoux E, Jezierska A, Pesquet J-C, Talbot H (2013) A majorize-minimize subspace approach for ℓ 2 − ℓ 0 image regularization. SIAM J Imag Sci 6(1):563–591
Chaari L, Batatia H, Dobigeon N, Tourneret J-Y (2014) A hierarchical sparsity-smoothness bayesian model for ℓ 0 + ℓ 1 + ℓ 2 regularization. In: Proc IEEE Int Conf Acoust, Speech, Signal Process, pp 1901–1905
Mohammadi M, Fatemizadeh E, Mahoor M (2014) PCA-based dictionary building for accurate facial expression recognition via sparse representation. J Vis Commun Image Represent 25(5):1082–1092
Burton D, Coleman J (2010) Quasi-Cauchy sequences. Am Math Monthly 117(4):328–333
Wright SJ, Nowak RD, Figueiredo M (2014) SpaRSA software. [Online]. Available: http://www.lx.it.pt/~mtf/SpaRSA/
IBM (2014) ILOG CPLEX optimization studio. [Online]. Available: http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
LeCun Y, Cortes C, Burges CJ (2014) MNIST dataset. [Online]. Available: http://yann.lecun.com/exdb/mnist/
Afonso MV, Bioucas-Dias JM, Figueiredo MA (2010) Fast image recovery using variable splitting and constrained optimization. IEEE Trans Image Process 19(9):2345–2356
Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20(1–2):89–97
Pillai JK, Patel VM, Chellappa R, Ratha NK (2011) Secure and robust iris recognition using random projections and sparse representations. IEEE Trans Pattern Anal Machine Intell 33(9):1877–1893
Majumdar A, Ward RK (2009) Classification via group sparsity promoting regularization. In: Proc IEEE Int Conf Acoust, Speech, Signal Process, pp 861–864
Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: A literature survey. ACM Comput Surv 35(4):399–458
Zhang X, Gao Y (2009) Face recognition across pose: A review. Pattern Recognition 42(11): 2876–2896
Li SZ, Jain AK (eds) (2011) Handbook of Face Recognition, 2nd edn. Springer
Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Machine Intell 23(6):643–660
Martinez AM, Benavente R (1998) The AR face database. CVC Technical Report, 24
Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: Proc IEEE Conf Comput Vision Pattern Recogn, pp 625–632
M. Turk and A. Pentland (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86
Ho J, Yang M, Lim J, Lee K, Kriegman D (2003) Clustering appearances of objects under varying illumination conditions. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 11–18
Vapnik VN (1995) The nature of statistical learning theory. New York, USA: Springer
Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Machine Intell 19(7): 711–720
Huang J, Huang X, Metaxas D (2008) Simultaneous image transformation and sparse representation recovery. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8
Wagner A, Wright J, Ganesh A, Zhou Z, Mobahi H, Ma Y (2012) Towards a practical face recognition system: Robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Machine Intell 34(2):372–386
Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 59–70
Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 2169–2178
Zhang H, Berg A, Maire M, Malik J (2006) SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 2126–2136
Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 3360–3367
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Monga, V., Mousavi, H.S., Srinivas, U. (2018). Sparsity Constrained Estimation in Image Processing and Computer Vision. In: Monga, V. (eds) Handbook of Convex Optimization Methods in Imaging Science. Springer, Cham. https://doi.org/10.1007/978-3-319-61609-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-61609-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61608-7
Online ISBN: 978-3-319-61609-4
eBook Packages: Computer ScienceComputer Science (R0)