Skip to main content

Sparsity Constrained Estimation in Image Processing and Computer Vision

  • Chapter
  • First Online:
  • 1697 Accesses

Abstract

Over the past decade, sparsity has emerged as a dominant theme in signal processing and big data applications. In this chapter, we formulate and solve new flavors of sparsity-constrained optimization problems built on the family of spike-and-slab priors. First, we develop an efficient Iterative Convex Refinement solution to the hard non-convex problem of Bayesian signal recovery under sparsity-inducing spike-and-slab priors. We also offer a Bayesian perspective on sparse representation-based classification via the introduction of class-specific priors. This formulation represents a consummation of ideas developed for model-based compressive sensing into a general framework for sparse model-based classification.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    The Matlab code for ICR is available online at http://signal.ee.psu.edu/ICR/ICRpage.htm

References

  1. Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed Problems. Winston, New York

    MATH  Google Scholar 

  2. Candès EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math 59(8):1207–1223

    Article  MathSciNet  MATH  Google Scholar 

  3. Donoho FL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  MathSciNet  MATH  Google Scholar 

  4. Fodor IK, Kamath C (2003) Denoising through wavelet shrinkage: An empirical study. J Elec Imag 12(1):151–160

    Article  Google Scholar 

  5. Coifman RR, Donoho DL (1995) Translation-invariant de-noising. In: Wavelets and statistics. Lecture Notes in Statistics Series, vol 103. Springer, pp 125–150

    Google Scholar 

  6. Simoncelli EP (1999) Bayesian denoising of visual images in the wavelet domain. In: Bayesian inference in wavelet-based models. pp 291–308, Springer

    Google Scholar 

  7. Deledalle C-A, Denis L, Tupin F (2009) Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 18(12):2661–2672

    Article  MathSciNet  MATH  Google Scholar 

  8. Romberg JK, Choi H, Baraniuk RG (2001) Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Trans Image Process 10(7):1056–1068

    Article  Google Scholar 

  9. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  10. Dong W, Li X, Zhang L, Shi G (2011) Sparsity-based image denoising via dictionary learning and structural clustering. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 457–464

    Google Scholar 

  11. Guillemot C, Le Meur O (2014) Image inpainting: Overview and recent advances. IEEE Signal Process Mag 31(1):127–144

    Article  Google Scholar 

  12. Bertalmio M, Sapiro G, Caselles V, Ballester C (2000) Image inpainting. In: Proc ACM Conf Comput Graph Interactive Tech. ACM, pp 417–424

    Google Scholar 

  13. Telea A (2004) An image inpainting technique based on the fast marching method. J Graphics Tools 9(1):23–34

    Article  Google Scholar 

  14. Liang L, Liu C, Xu Y-Q, Guo B, Shum H-Y (2001) Real-time texture synthesis by patch-based sampling. ACM Trans Graph 20(3):127–150

    Article  Google Scholar 

  15. Guleryuz OG (2006) Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: Theory. IEEE Trans Image Process 15(3):539–554

    Article  Google Scholar 

  16. Li X (2011) Image recovery via hybrid sparse representations: A deterministic annealing approach. IEEE J Sel Topics Signal Process 5(5):953–962

    Article  Google Scholar 

  17. Starck J-L, Elad M, Donoho DL (2005) Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process 14(10):1570–1582

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim SP, Bose NK, Valenzuela HM (1990) Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Trans Acoust, Speech, Signal Process 38(6):1013–1027

    Article  Google Scholar 

  19. Freeman WT, Jones TR, Pasztor EC (2002) Example-based super-resolution. IEEE Comput Graph Appln 22(2):56–65

    Article  Google Scholar 

  20. Farsiu S, Robinson MD, Elad M, Milanfar P (2004) Fast and robust multiframe super resolution. IEEE Trans Image Process 13(10):1327–1344

    Article  Google Scholar 

  21. Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: A technical overview. IEEE Signal Process Mag 20(3):21–36

    Article  Google Scholar 

  22. Tappen MF, Russell BC, Freeman WT (2003) Exploiting the sparse derivative prior for super-resolution and image demosaicing. In: IEEE Workshop on Statistical and Computational Theories of Vision

    Google Scholar 

  23. Fattal R (2007) Image upsampling via imposed edge statistics. ACM Trans. Graph. 26(3). Article No. 95. http://doi.acm.org/10.1145/1276377.1276496

  24. Dai S, Han M, Xu W, Wu Y, Gong Y (2007) Soft edge smoothness prior for alpha channel super resolution. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8

    Google Scholar 

  25. Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8

    Google Scholar 

  26. Yang J, Wright J, Huang T, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang J, Wang Z, Lin Z, Cohen S, Huang T (2012) Coupled dictionary training for image super-resolution. IEEE Trans Image Process 21(8): 3467–3478

    Article  MathSciNet  MATH  Google Scholar 

  28. Zeyde R, Elad M, Protter M (2012) On single image scale-up using sparse-representations. In: Curves and Surfaces. Springer, pp 711–730

    MATH  Google Scholar 

  29. Timofte R, De Smet V, Van Gool L (2013) Anchored neighborhood regression for fast example-based super-resolution. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1920–1927

    Google Scholar 

  30. Timofte R, De Smet V, Van Gool L (2014) A+: Adjusted anchored neighborhood regression for fast super-resolution. In: Proc Asian Conf Comput Vision, pp 111–126

    Google Scholar 

  31. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Machine Intell 31(2):210–227

    Article  Google Scholar 

  32. Taubman DS, Marcellin MW (2001) JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic, Norwell, MA

    Google Scholar 

  33. Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–609

    Article  Google Scholar 

  34. Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  35. Lustig M, Donoho DL, Pauly JL (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 58: 1182–1195

    Article  Google Scholar 

  36. Kreutz-Delgado K, Murray JF, Rao BD, Engan K, Lee T-W, Sejnowski TJ (2003) Dictionary learning algorithms for sparse representation. Neural Comput 15(2):349–396

    Article  MATH  Google Scholar 

  37. Sprechmann P, Ramirez I, Sapiro G, Eldar YC (2011) C-HiLasso: A collaborative hierarchical sparse modeling framework. IEEE Trans Signal Process 59(9):4183–4198

    Article  MathSciNet  Google Scholar 

  38. Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2015) Structured sparse priors for image classification. IEEE Trans Image Process 24(6):1763–1776

    Article  MathSciNet  Google Scholar 

  39. Mousavi HS, Srinivas U, Monga V, Suo Y, Dao M, Tran TD (2014) Multi-task image classification via collaborative, hierarchical spike-and-slab priors. In: Proc IEEE Int Conf Image Process, pp 4236–4240

    Google Scholar 

  40. Suo Y, Dao M, Tran T, Mousavi H, Srinivas U, Monga V (2014) Group structured dirty dictionary learning for classification. In: Proc IEEE Int Conf Image Process, pp 150–154

    Google Scholar 

  41. Anaraki FP, Hughes SM (2013) Compressive K-SVD. In: Proc IEEE Int Conf Acoust, Speech, Signal Process. pp 5469–5473

    Google Scholar 

  42. Sadeghi, M Babaie-Zadeh M, Jutten C (2013) Dictionary learning for sparse representation: A novel approach. IEEE Signal Process Lett 20(12): 1195–1198

    Article  Google Scholar 

  43. Gorodnitsky IF, Rao BD (1997) Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans Signal Process 45(3):600–616

    Article  Google Scholar 

  44. Wright SJ, Nowak RD, Figueiredo MA (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479–2493

    Article  MathSciNet  Google Scholar 

  45. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  46. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  47. Andersen MR, Winther O, Hansen LK (2014) Bayesian inference for structured spike and slab priors. In: Adv Neural Inf Process Syst, pp 1745–1753

    Google Scholar 

  48. Srinivas U, Mousavi HS, Monga V, Hattel A, Jayarao B (2014) Simultaneous sparsity model for histopathological image representation and classification.” IEEE Trans Med Imag 33(5): 1163–1179

    Google Scholar 

  49. Baraniuk RG (2007) Compressive sensing. IEEE Signal Process Mag 24(4):118–121

    Article  MathSciNet  Google Scholar 

  50. Tibshirani R (2011) Regression shrinkage and selection via the Lasso: A retrospective. J R Stat Soc Ser B (Methodological) 73(3):273–282

    Article  MathSciNet  Google Scholar 

  51. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodological) 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  52. Donoho DL (2006) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829

    Article  MathSciNet  MATH  Google Scholar 

  53. Becker S, Bobin J, Candès EJ (2011) Nesta: A fast and accurate first-order method for sparse recovery. SIAM J Imag Sci 4(1):1–39

    Article  MathSciNet  MATH  Google Scholar 

  54. Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted L1 minimization. J Fourier Anal Appl 14(5–6):877–905

    Article  MathSciNet  MATH  Google Scholar 

  55. Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B (Methodological) 68(1):49–67

    Article  MathSciNet  MATH  Google Scholar 

  56. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Methodological) 67(2):301–320

    Article  MathSciNet  MATH  Google Scholar 

  57. Zou H (2006) The adaptive lasso and its oracle properties. J Amer Stat Assoc 101(476):1418–1429

    Article  MathSciNet  MATH  Google Scholar 

  58. Zou H, Zhang HH (2009) On the adaptive elastic-net with a diverging number of parameters. Ann Stat 37(4):1733–1751

    Article  MathSciNet  MATH  Google Scholar 

  59. Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused Lasso. J R Stat Soc Ser B (Methodological) 67(1):91–108

    Article  MathSciNet  MATH  Google Scholar 

  60. Yuan M, Lin Y (2007) Model selection and estimation in the gaussian graphical model. Biometrika 94(1):19–35

    Article  MathSciNet  MATH  Google Scholar 

  61. Candes E, Tao T (2007) The dantzig selector: Statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351

    Article  MathSciNet  MATH  Google Scholar 

  62. Tibshirani RJ, Hoefling H, Tibshirani R (2011) Nearly-isotonic regression. Technometrics 53(1):54–61

    Article  MathSciNet  Google Scholar 

  63. Candes EJ, Tao T (2010) The power of convex relaxation: Near-optimal matrix completion. IEEE Trans Inf Theory 56(5):2053–2080

    Article  MathSciNet  MATH  Google Scholar 

  64. Mazumder R, Hastie T, Tibshirani R (2010) Spectral regularization algorithms for learning large incomplete matrices. J Mach Learn Res 11(Aug): 2287–2322

    MathSciNet  MATH  Google Scholar 

  65. Mousavi A, Maleki A, RG Baraniuk (2013) Asymptotic analysis of LASSOs solution path with implications for approximate message passing. arXiv preprint arXiv:1309.5979

    Google Scholar 

  66. Mohimani H, Babaie-Zadeh M, Jutten C (2009) A fast approach for overcomplete sparse decomposition based on smoothed norm. IEEE Trans Signal Process 57(1):289–301

    Article  MathSciNet  MATH  Google Scholar 

  67. Wipf DP, Rao BD (2004) Sparse Bayesian learning for basis selection. IEEE Trans Signal Process 52(8):2153–2164

    Article  MathSciNet  MATH  Google Scholar 

  68. Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Trans Signal Process 56(6):2346–2356

    Article  MathSciNet  Google Scholar 

  69. Lu X, Wang Y, Yuan Y (2013) Sparse coding from a Bayesian perspective. IEEE Trans Neur Netw Learn Sys 24(6):929–939

    Article  Google Scholar 

  70. Dobigeon N, Hero AO, Tourneret J-Y (2009) Hierarchical bayesian sparse image reconstruction with application to MRFM. IEEE Trans Image Process 18(9):2059–2070

    Article  MathSciNet  MATH  Google Scholar 

  71. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1):1–122

    Article  MATH  Google Scholar 

  72. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

  73. Tropp JA (2006) Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Processing 86(3):589–602

    Article  MathSciNet  MATH  Google Scholar 

  74. Baraniuk RG, Cevher V, Duarte MF, Hegde C (2010) Model-based compressive sensing. IEEE Trans Image Process 56(4):1982–2001

    MathSciNet  MATH  Google Scholar 

  75. He L, Carin L (2009) Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Trans Signal Process 57(9):3488–3497

    Article  MathSciNet  Google Scholar 

  76. Babacan S, Molina R, Katsaggelos A (2010) Bayesian compressive sensing using Laplace priors. IEEE Trans Image Process 19(1):53–63

    Article  MathSciNet  MATH  Google Scholar 

  77. Suo Y, Dao M, Tran T, Srinivas U, Monga V (2013) Hierarchical sparse modeling using spike and slab priors. In: Proc IEEE Int Conf Acoust, speech, Signal Process. pp 3103–3107

    Google Scholar 

  78. Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2013) Structured sparse priors for image classification. In: Proc IEEE Int Conf Image Process, pp 3211–3215

    Google Scholar 

  79. Jenatton R, Audibert J-Y, Bach F (2011) Structured variable selection with sparsity-inducing norms. J Mach Learn Res 12:2777–2824

    MathSciNet  MATH  Google Scholar 

  80. Huang J, Zhang T, Metaxas D (2011) Learning with structured sparsity. J Mach Learn Res 12: 3371–3412

    MathSciNet  MATH  Google Scholar 

  81. Huang J, Zhang T et al (2010) The benefit of group sparsity. Ann Stat 38(4):1978–2004

    Article  MathSciNet  MATH  Google Scholar 

  82. Cotter SF, Rao BD, Engan K, Kreutz-Delgado K (2005) Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process 53(7):2477–2488

    Article  MathSciNet  MATH  Google Scholar 

  83. Eldar YC, Rauhut H (2010) Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans Inf Theory 56(1):505–519

    Article  MathSciNet  MATH  Google Scholar 

  84. Yen T-J (2011) A majorization–minimization approach to variable selection using spike and slab priors. Ann Stat 39(3):1748–1775

    Article  MathSciNet  MATH  Google Scholar 

  85. Cevher V, Indyk P, Carin L, Baraniuk RG (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103

    Google Scholar 

  86. Cevher V (2009) Learning with compressible priors. In: Adv Neural Inf Process Syst, pp 261–269

    Google Scholar 

  87. Cevher V, Indyk P, Carin L, Baraniuk RG (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103

    Google Scholar 

  88. Mitchell TJ, Beauchamp JJ (1988) Bayesian variable selection in linear regression. J Amer Stat Assoc 83(404):1023–1032

    Article  MathSciNet  MATH  Google Scholar 

  89. George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Amer Stat Assoc 88(423):881–889

    Article  Google Scholar 

  90. Ishwaran H, Rao JS (2005) Spike and slab variable selection: Frequentist and Bayesian strategies. Ann Stat 730–773

    Google Scholar 

  91. Carvalho CM, Chang J, Lucas JE, Nevins JR, Wang Q, West M (2008) High-dimensional sparse factor modeling: Applications in gene expression genomics. J Amer Stat Assoc 103(484): 1438–1456

    Article  MathSciNet  MATH  Google Scholar 

  92. Titsias MK, Lázaro-Gredilla M (2011) Spike and slab variational inference for multi-task and multiple kernel learning. In: Adv Neural Inf Process Syst, pp 2339–2347

    Google Scholar 

  93. Hernández-Lobato JM, Hernández-Lobato D, Suárez A (2014) Expectation propagation in linear regression models with spike-and-slab priors. Machine Learning pp 1–51

    Google Scholar 

  94. Hernández-Lobato D, Hernández-Lobato JM, Dupont P (2013) Generalized spike-and-slab priors for bayesian group feature selection using expectation propagation. J Mach Learn Res 14(1):1891–1945

    MathSciNet  MATH  Google Scholar 

  95. Kappen HJ, Gómez V (2014) The variational garrote. Machine Learning 96(3):269–294

    Article  MathSciNet  MATH  Google Scholar 

  96. Vila J, Schniter P (2011) Expectation-maximization Bernoulli-Gaussian approximate message passing. In: Proc IEEE Asilomar Conf Signal, Syst, Comput, pp 799–803

    Google Scholar 

  97. Mousavi, HS, Monga V, Tran TD (2015) Iterative convex refinement for sparse recovery. IEEE Signal Process Lett 22(11):1903–1907

    Article  Google Scholar 

  98. Chouzenoux E, Jezierska A, Pesquet J-C, Talbot H (2013) A majorize-minimize subspace approach for 2 0 image regularization. SIAM J Imag Sci 6(1):563–591

    Article  MathSciNet  MATH  Google Scholar 

  99. Chaari L, Batatia H, Dobigeon N, Tourneret J-Y (2014) A hierarchical sparsity-smoothness bayesian model for 0 + 1 + 2 regularization. In: Proc IEEE Int Conf Acoust, Speech, Signal Process, pp 1901–1905

    Google Scholar 

  100. Mohammadi M, Fatemizadeh E, Mahoor M (2014) PCA-based dictionary building for accurate facial expression recognition via sparse representation. J Vis Commun Image Represent 25(5):1082–1092

    Article  Google Scholar 

  101. Burton D, Coleman J (2010) Quasi-Cauchy sequences. Am Math Monthly 117(4):328–333

    Article  MathSciNet  MATH  Google Scholar 

  102. Wright SJ, Nowak RD, Figueiredo M (2014) SpaRSA software. [Online]. Available: http://www.lx.it.pt/~mtf/SpaRSA/

  103. IBM (2014) ILOG CPLEX optimization studio. [Online]. Available: http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

  104. LeCun Y, Cortes C, Burges CJ (2014) MNIST dataset. [Online]. Available: http://yann.lecun.com/exdb/mnist/

  105. Afonso MV, Bioucas-Dias JM, Figueiredo MA (2010) Fast image recovery using variable splitting and constrained optimization. IEEE Trans Image Process 19(9):2345–2356

    Article  MathSciNet  MATH  Google Scholar 

  106. Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20(1–2):89–97

    MathSciNet  MATH  Google Scholar 

  107. Pillai JK, Patel VM, Chellappa R, Ratha NK (2011) Secure and robust iris recognition using random projections and sparse representations. IEEE Trans Pattern Anal Machine Intell 33(9):1877–1893

    Article  Google Scholar 

  108. Majumdar A, Ward RK (2009) Classification via group sparsity promoting regularization. In: Proc IEEE Int Conf Acoust, Speech, Signal Process, pp 861–864

    Google Scholar 

  109. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: A literature survey. ACM Comput Surv 35(4):399–458

    Article  Google Scholar 

  110. Zhang X, Gao Y (2009) Face recognition across pose: A review. Pattern Recognition 42(11): 2876–2896

    Article  Google Scholar 

  111. Li SZ, Jain AK (eds) (2011) Handbook of Face Recognition, 2nd edn. Springer

    Google Scholar 

  112. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Machine Intell 23(6):643–660

    Article  Google Scholar 

  113. Martinez AM, Benavente R (1998) The AR face database. CVC Technical Report, 24

    Google Scholar 

  114. Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: Proc IEEE Conf Comput Vision Pattern Recogn, pp 625–632

    Google Scholar 

  115. M. Turk and A. Pentland (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  116. Ho J, Yang M, Lim J, Lee K, Kriegman D (2003) Clustering appearances of objects under varying illumination conditions. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 11–18

    Google Scholar 

  117. Vapnik VN (1995) The nature of statistical learning theory. New York, USA: Springer

    Book  MATH  Google Scholar 

  118. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Machine Intell 19(7): 711–720

    Article  Google Scholar 

  119. Huang J, Huang X, Metaxas D (2008) Simultaneous image transformation and sparse representation recovery. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8

    Google Scholar 

  120. Wagner A, Wright J, Ganesh A, Zhou Z, Mobahi H, Ma Y (2012) Towards a practical face recognition system: Robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Machine Intell 34(2):372–386

    Article  Google Scholar 

  121. Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 59–70

    Google Scholar 

  122. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 2169–2178

    Google Scholar 

  123. Zhang H, Berg A, Maire M, Malik J (2006) SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 2126–2136

    Google Scholar 

  124. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 3360–3367

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Monga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Monga, V., Mousavi, H.S., Srinivas, U. (2018). Sparsity Constrained Estimation in Image Processing and Computer Vision. In: Monga, V. (eds) Handbook of Convex Optimization Methods in Imaging Science. Springer, Cham. https://doi.org/10.1007/978-3-319-61609-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61609-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61608-7

  • Online ISBN: 978-3-319-61609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics