Skip to main content

Magnetotactic Bacteria Optimization Algorithm Based on Moment Interaction Energy

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10385))

Included in the following conference series:

Abstract

In this paper, an improved magnetotactic bacteria optimization algorithm (IMBOA) is proposed to solve unconstrained optimization problems. IMBOA uses an archive to keep some better solutions in order to guide the moving of the whole population in each generation. And it uses a kind of efficient interaction energy to enhance diversity of the population for encouraging broader exploration. The proposed algorithm is compared with some relative optimization algorithms on the CEC 2013 real-parameter optimization benchmark functions. Experimental results show that the proposed algorithm IMBOA has better performance than the compared algorithms on most of the benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  2. Tereshko, V.: Reaction-diffusion model of a honeybee colony’s foraging behaviour. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 807–816. Springer, Heidelberg (2000). doi:10.1007/3-540-45356-3_79

    Chapter  Google Scholar 

  3. Müeller, S., Marchetto, J., Airaghi, S., Koumoutsakos, P.: Optimization based on bacterial chemotaxis. IEEE Trans. Evol. Comput. 6, 16–29 (2002)

    Article  Google Scholar 

  4. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04944-6_14

    Chapter  Google Scholar 

  5. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBic 2009), USA, pp. 210–214. IEEE Publications (2009)

    Google Scholar 

  6. Mo, H.W.: Research on magnetotactic bacteria optimization algorithm. In: The Fifth International Conference on Advanced Computational Intelligence, pp. 423–428 (2012)

    Google Scholar 

  7. Faivre, D., Schuler, D.: Magnetotactic bacteria and magnetosomes. Chem. Rev. 108, 4875–4898 (2008)

    Article  Google Scholar 

  8. Mo, H.W., Liu, L.L., Xu, L.F., Zhao, Y.Y.: Research on magnetotactic bacteria optimization algorithm based on the best individual. In: The Sixth International Conference on Bio-inspired Computing, Wuhan, China, pp. 318–322 (2014)

    Google Scholar 

  9. Mo, H.W., Liu, L.L., Xu, L.F.: A power spectrum optimization algorithm inspired by magnetotactic bacteria. Neural Comput. Appl. 25(7), 1823–1844 (2014)

    Article  Google Scholar 

  10. Mo, H.W., Liu, L.L., Zhao, J.: A new magnetotactic bacteria optimization algorithm based on moment migration. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(1), 15–26 (2017)

    Article  Google Scholar 

  11. Liang, J., Qu, B.Y., Suganthan, P., Hernández-Díaz, A.: Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical report, Nanyang Technological University, Singapore, Technical report (2013)

    Google Scholar 

  12. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)

    Article  Google Scholar 

  13. Garcia-Martinez, C., Lozano, M., Herrera, F., Molina, D., Sanchez, A.M.: Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur. J. Oper. Res. 185(3), 1088–1113 (2008)

    Article  MATH  Google Scholar 

  14. Chen, W.N., et al.: Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 17(2), 241–258 (2013)

    Article  Google Scholar 

  15. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)

    Article  Google Scholar 

  16. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grant No. 61075113, the Excellent Youth Foundation of Heilongjiang Province of China under Grant No. JC201212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Mo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, L., Mo, H., Zhao, J., Luo, C., Chu, Z. (2017). Magnetotactic Bacteria Optimization Algorithm Based on Moment Interaction Energy. In: Tan, Y., Takagi, H., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2017. Lecture Notes in Computer Science(), vol 10385. Springer, Cham. https://doi.org/10.1007/978-3-319-61824-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61824-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61823-4

  • Online ISBN: 978-3-319-61824-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics