Abstract
In this paper, an improved magnetotactic bacteria optimization algorithm (IMBOA) is proposed to solve unconstrained optimization problems. IMBOA uses an archive to keep some better solutions in order to guide the moving of the whole population in each generation. And it uses a kind of efficient interaction energy to enhance diversity of the population for encouraging broader exploration. The proposed algorithm is compared with some relative optimization algorithms on the CEC 2013 real-parameter optimization benchmark functions. Experimental results show that the proposed algorithm IMBOA has better performance than the compared algorithms on most of the benchmark problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
Tereshko, V.: Reaction-diffusion model of a honeybee colony’s foraging behaviour. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 807–816. Springer, Heidelberg (2000). doi:10.1007/3-540-45356-3_79
Müeller, S., Marchetto, J., Airaghi, S., Koumoutsakos, P.: Optimization based on bacterial chemotaxis. IEEE Trans. Evol. Comput. 6, 16–29 (2002)
Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04944-6_14
Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBic 2009), USA, pp. 210–214. IEEE Publications (2009)
Mo, H.W.: Research on magnetotactic bacteria optimization algorithm. In: The Fifth International Conference on Advanced Computational Intelligence, pp. 423–428 (2012)
Faivre, D., Schuler, D.: Magnetotactic bacteria and magnetosomes. Chem. Rev. 108, 4875–4898 (2008)
Mo, H.W., Liu, L.L., Xu, L.F., Zhao, Y.Y.: Research on magnetotactic bacteria optimization algorithm based on the best individual. In: The Sixth International Conference on Bio-inspired Computing, Wuhan, China, pp. 318–322 (2014)
Mo, H.W., Liu, L.L., Xu, L.F.: A power spectrum optimization algorithm inspired by magnetotactic bacteria. Neural Comput. Appl. 25(7), 1823–1844 (2014)
Mo, H.W., Liu, L.L., Zhao, J.: A new magnetotactic bacteria optimization algorithm based on moment migration. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(1), 15–26 (2017)
Liang, J., Qu, B.Y., Suganthan, P., Hernández-DÃaz, A.: Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical report, Nanyang Technological University, Singapore, Technical report (2013)
Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)
Garcia-Martinez, C., Lozano, M., Herrera, F., Molina, D., Sanchez, A.M.: Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur. J. Oper. Res. 185(3), 1088–1113 (2008)
Chen, W.N., et al.: Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 17(2), 241–258 (2013)
Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)
Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)
Acknowledgements
This work is partially supported by the National Natural Science Foundation of China under Grant No. 61075113, the Excellent Youth Foundation of Heilongjiang Province of China under Grant No. JC201212.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Xu, L., Mo, H., Zhao, J., Luo, C., Chu, Z. (2017). Magnetotactic Bacteria Optimization Algorithm Based on Moment Interaction Energy. In: Tan, Y., Takagi, H., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2017. Lecture Notes in Computer Science(), vol 10385. Springer, Cham. https://doi.org/10.1007/978-3-319-61824-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-61824-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61823-4
Online ISBN: 978-3-319-61824-1
eBook Packages: Computer ScienceComputer Science (R0)