Skip to main content

Analysis of High Performance Applications Using Workload Requirements

  • Conference paper
  • First Online:
High Performance Computing for Computational Science – VECPAR 2016 (VECPAR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10150))

Included in the following conference series:

  • 410 Accesses

Abstract

This short paper proposes two novel methodologies for analyzing scientific applications in distributed environments, using workload requirements. The first explores the impact of features such as problem size and programming language, over different computational architectures. The second explores the impact of mapping virtual cluster resources on the performance of parallel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel computing landscape. Commun. ACM 52(10), 56–67 (2009). http://doi.acm.org/10.1145/1562764.1562783

    Article  Google Scholar 

  2. Ferro, M., Mury, A.R., Schulze, B.: Manual de metodologia de análise operacional de sistemas de computação científica distribuída de alto desempenho. Relatórios de Pesquisa e Desenvolvimento do LNCC 01/2015, Laboratório Nacional de Computação Científica, Petropolis (2015). www.lncc.br

  3. Ferro, M., Nicolás, M.F., del Rosario, Q., Saji, G., Mury, A.R., Schulze, B.: Leveraging high performance computing for bioinformatics: a methodology that enables a reliable decision-making. In: 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2016, Cartagena, 16–19 May 2016, pp. 684–692. IEEE Computer Society (2016)

    Google Scholar 

  4. Mc Evoy, G., Porto, F., Schulze, B.: A representation model for virtual machine allocation. In: International Workshop on Clouds and (eScience) Applications Management - CloudAM 2012. 2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing (2012)

    Google Scholar 

  5. Wagner, D., Mylander, W., Sanders, T.: Naval Operations Analysis, 3rd edn. Naval Institute Press, Annapolis (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariza Ferro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ferro, M., Mc Evoy, G., Schulze, B. (2017). Analysis of High Performance Applications Using Workload Requirements. In: Dutra, I., Camacho, R., Barbosa, J., Marques, O. (eds) High Performance Computing for Computational Science – VECPAR 2016. VECPAR 2016. Lecture Notes in Computer Science(), vol 10150. Springer, Cham. https://doi.org/10.1007/978-3-319-61982-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61982-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61981-1

  • Online ISBN: 978-3-319-61982-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics