Abstract
In this paper, we present an algorithm for the singular value decomposition (SVD) of a bidiagonal matrix by means of the eigenpairs of an associated symmetric tridiagonal matrix. The algorithm is particularly suited for the computation of a subset of singular values and corresponding vectors. We focus on a sequential implementation of the algorithm, discuss special cases and other issues. We use a large set of bidiagonal matrices to assess the accuracy of the implementation and to identify potential shortcomings. We show that the algorithm can be up to three orders of magnitude faster than existing algorithms, which are limited to the computation of a full SVD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)
Marques, O., Demmel, J., Voemel, C., Parlett, B.N.: A testing infrastructure for symmetric tridiagonal eigensolvers. ACM TOMS 35, 1–13 (2008)
Demmel, J., Marques, O., Voemel, C., Parlett, B.N.: Performance and accuracy of LAPACK’s symmetric tridiagonal eigensolvers. SIAM J. Sci. Comput. 30, 1508–1526 (2008)
Dhillon, I.S., Parlett, B.N.: Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387, 1–28 (2004)
Dhillon, I.S., Parlett, B.N., Voemel, C.: The design and implementation of the MRRR algorithm. ACM TOMS 32, 533–560 (2006)
Willems, P., Lang, B.: A framework for the MR\(^3\) algorithm: theory and implementation. SIAM J. Sci. Comput. 35, 740–766 (2013)
Demmel, J., Kahan, W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Stat. Comput. 11, 873–912 (1990)
Willems, P., Lang, B., Voemel, C.: Computing the bidiagonal SVD using multiple relatively robust representations. SIAM. J. Matrix Anal. Appl. 28, 907–926 (2006)
Willems, P.: On MR\(^3\)-type algorithms for the tridiagonal symmetric eigenproblem and the bidiagonal SVD, PhD dissertation, University of Wuppertal (2010)
Voemel, C.: ScaLAPACK’s MRRR algorithm. ACM TOMS 37, 1–35 (2010)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Marques, O., Vasconcelos, P.B. (2017). Computing the Bidiagonal SVD Through an Associated Tridiagonal Eigenproblem. In: Dutra, I., Camacho, R., Barbosa, J., Marques, O. (eds) High Performance Computing for Computational Science – VECPAR 2016. VECPAR 2016. Lecture Notes in Computer Science(), vol 10150. Springer, Cham. https://doi.org/10.1007/978-3-319-61982-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-61982-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61981-1
Online ISBN: 978-3-319-61982-8
eBook Packages: Computer ScienceComputer Science (R0)