Skip to main content

Classification of Alignments Between Concepts of Formal Mathematical Systems

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10383))

Included in the following conference series:

  • 960 Accesses

Abstract

Mathematical knowledge is publicly available in dozens of different formats and languages, ranging from informal (e.g. Wikipedia) to formal corpora (e.g., Mizar). Despite an enormous amount of overlap between these corpora, only few machine-actionable connections exist. We speak of alignment if the same concept occurs in different libraries, possibly with slightly different names, notations, or formal definitions. Leveraging these alignments creates a huge potential for knowledge sharing and transfer, e.g., integrating theorem provers or reusing services across systems. Notably, even imperfect alignments, i.e. concepts that are very similar rather than identical, can often play very important roles. Specifically, in machine learning techniques for theorem proving and in automation techniques that use these, they allow learning-reasoning based automation for theorem provers to take inspiration from proofs from different formal proof libraries or semi-formal libraries even if the latter is based on a different mathematical foundation. We present a classification of alignments and design a simple format for describing alignments, as well as an infrastructure for sharing them. We propose these as a centralized standard for the community. Finally, we present an initial collection of \(\approx \)12000 alignments from the different kinds of mathematical corpora, including proof assistant libraries and semi-formal corpora as a public resource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For simplicity in the remaining part of the paper we will not give complete HTTP links, but rather use single keyword abbreviations. Complete names of logics and modules are given in the online service.

  2. 2.

    https://mathhub.info/mh/mmt/:concepts?page=About.

References

  1. Asperti, A., Coen, C.S., Tassi, E., Zacchiroli, S.: Crafting a proof assistant. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 18–32. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74464-1_2

    Chapter  Google Scholar 

  2. Asperti, A., Guidi, F., Coen, C.S., Tassi, E., Zacchiroli, S.: A content based mathematical search engine: Whelp. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839, pp. 17–32. Springer, Heidelberg (2006). doi:10.1007/11617990_2

    Chapter  Google Scholar 

  3. Bobot, F., Filliâtre, J., Marché, C., Paskevich, A.: Why3: shepherd your herd of provers. In: Boogie 2011: First International Workshop on Intermediate Verification Languages, pp. 53–64 (2011)

    Google Scholar 

  4. Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.: Project abstract: logic atlas and integrator (LATIN). In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS, vol. 6824, pp. 289–291. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22673-1_24

    Chapter  Google Scholar 

  5. Codescu, M., Mossakowski, T., Kutz, O.: A categorical approach to ontology alignment. In: Proceedings of the 9th International Conference on Ontology Matching, pp. 1–12. CEUR-WS.org (2014)

    Google Scholar 

  6. Coq Development Team: The Coq Proof Assistant: Reference Manual. Technical report, INRIA (2015)

    Google Scholar 

  7. David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API 4.0. Semant. Web 2(1), 3–10 (2011)

    Google Scholar 

  8. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  9. Ginev, D., Corneli, J.: Nnexus reloaded. In: Watt, et al. (eds.) [WDS+14], pp. 423–426

    Google Scholar 

  10. Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 267–281. Springer, Cham (2014). doi:10.1007/978-3-319-08434-3_20

    Chapter  Google Scholar 

  11. Gauthier, T., Kaliszyk, C.: Sharing HOL4 and HOL Light proof knowledge. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 372–386. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7_26

    Chapter  Google Scholar 

  12. Gauthier, T., Kaliszyk, C., Urban, J.: Initial experiments with statistical conjecturing over large formal corpora. In: Kohlhase, A., et al. (eds.) Work in Progress at CICM 2016. CEUR, vol. 1785, pp. 219–228. CEUR-WS.org (2016)

    Google Scholar 

  13. Hales, T.C., et al.: A formal proof of the Kepler conjecture. CoRR, abs/1501.02155 (2015)

    Google Scholar 

  14. Hurd, J.: OpenTheory: package management for higher order logic theories. In: Reis, G.D., Théry, L. (eds.) Programming Languages for Mechanized Mathematics Systems, pp. 31–37. ACM (2009)

    Google Scholar 

  15. Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 51–66. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2_7

    Chapter  Google Scholar 

  16. Kaliszyk, C., Rabe, F.: Towards knowledge management for HOL light. In: Watt, et al. (eds.) [WDS+14], pp. 357–372

    Google Scholar 

  17. Kohlhase, M., Rabe, F.: QED reloaded: towards a pluralistic formal library of mathematical knowledge. J. Formalized Reason. 9(1), 201–234 (2016)

    MathSciNet  Google Scholar 

  18. Krauss, A., Schropp, A.: A mechanized translation from higher-order logic to set theory. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 323–338. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14052-5_23

    Chapter  Google Scholar 

  19. Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL light. Math. Comput. Sci. 9(1), 5–22 (2015)

    Article  MATH  Google Scholar 

  20. Keller, C., Werner, B.: Importing HOL light into Coq. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14052-5_22

    Chapter  Google Scholar 

  21. Müller, D., Gauthier, T., Kaliszyk, C., Kohlhase, M., Rabe, F.: Classification of alignments between concepts of formal mathematical systems. Technical report (2017)

    Google Scholar 

  22. Naumov, P., Stehr, M.-O., Meseguer, J.: The HOL/NuPRL proof translator – A practical approach to formal interoperability. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 329–345. Springer, Heidelberg (2001). doi:10.1007/3-540-44755-5_23

    Chapter  Google Scholar 

  23. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992). doi:10.1007/3-540-55602-8_217

    Google Scholar 

  24. Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 298–302. Springer, Heidelberg (2006). doi:10.1007/11814771_27

    Chapter  Google Scholar 

  25. Public repository for alignments. https://gl.mathhub.info/alignments/Public

  26. Rabe, F.: The MMT API: a generic MKM system. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 339–343. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39320-4_25

    Chapter  Google Scholar 

  27. Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1), 1–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.): CICM 2014. LNCS, vol. 8543. Springer, Cham (2014)

    Google Scholar 

  29. Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600. Springer, Heidelberg (2006)

    Google Scholar 

  30. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71067-7_7

Download references

Acknowledgements

We were supported by the German Science Foundation (DFG) under grants KO 2428/13-1 and RA-1872/3-1, the Austrian Science Fund (FWF) grant P26201, and the ERC starting grant no. 714034 SMART.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dennis Müller , Thibault Gauthier , Cezary Kaliszyk , Michael Kohlhase or Florian Rabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Müller, D., Gauthier, T., Kaliszyk, C., Kohlhase, M., Rabe, F. (2017). Classification of Alignments Between Concepts of Formal Mathematical Systems. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds) Intelligent Computer Mathematics. CICM 2017. Lecture Notes in Computer Science(), vol 10383. Springer, Cham. https://doi.org/10.1007/978-3-319-62075-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62075-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62074-9

  • Online ISBN: 978-3-319-62075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics