
Local Routing in Spanners Based on WSPDs

Frédérik Paradis

Thesis submitted in partial fulfilment of the requirements for the

Master’s degree of Computer Science

Ottawa-Carleton Institute for Computer Science

School of Electrical Engineering and Computer Science

University of Ottawa

c© Frédérik Paradis, Ottawa, Canada, 2017

Abstract

The well-separated pair decomposition (WSPD) of the complete Euclidean graph

defined on points in R2, introduced by Callahan and Kosaraju [JACM, 42 (1): 67-90,

1995], is a technique for partitioning the edges of the complete graph based on length

into a linear number of sets. Among the many different applications of WSPDs,

Callahan and Kosaraju proved that the sparse subgraph that results by selecting an

arbitrary edge from each set (called WSPD-spanner) is a 1+8/(s−4)-spanner, where

s > 4 is the separation ratio used for partitioning the edges.

Although competitive local-routing strategies exist for various spanners such as

Yao-graphs, Θ-graphs, and variants of Delaunay graphs, few local-routing strategies

are known for any WSPD-spanner. Our main contribution is a local-routing algorithm

with a near-optimal competitive routing ratio of 1 +O(1/s) on a WSPD-spanner.

Specifically, using Callahan and Kosaraju’s fair split-tree, we show how to build a

WSPD-spanner with spanning ratio 1 + 4/s+ 4/(s−2) which is a slight improvement

over 1 + 8/(s − 4). We then present a 2-local and a 1-local routing algorithm on

this spanner with competitive routing ratios of 1 + 6/(s − 2) + 4/s and 1 + 8/(s −
2) + 4/s + 8/s2, respectively. Moreover, we prove that there exists a point set for

which our WSPD-spanner has a spanning ratio of at least 1 + 8/s, thereby proving

the near-optimality of its spanning ratio and the near-optimality of the routing ratio

of both our routing algorithms.

ii

Table of Contents

Abstract ii

Table of Contents iii

List of Tables v

List of Figures vi

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Contribution . 3

1.4 Organization of the Thesis . 4

2 Background 5

2.1 Definitions . 5

2.2 WSPD-Spanner . 6

2.3 Well-Separated Pair Decomposition 7

3 Results 11

3.1 Preliminaries – Construction of the WSPD 11

3.2 Construction of t-Spanners Using WSPDs 13

3.3 2-Local Routing Algorithm . 25

3.3.1 The Algorithm . 25

3.3.2 Correctness . 30

3.3.3 Routing Ratio . 31

iii

3.4 Improvement – 1-Local Routing Algorithm 34

4 Conclusion 44

4.1 Summary of Results . 44

4.2 Future Work . 45

List of References 46

iv

List of Tables

1 List of WSPD-based spanners with bounded diameters 9

v

List of Figures

1 Illustration of the split tree . 12

2 Illustration of Lemma 3 and Lemma 4 16

3 Illustration of Lemma 5. Connected circles represent pairs in the WSPD. 17

4 Illustration of Lemma 6 . 18

5 Illustration of Theorem 1 . 21

6 Illustration of Theorem 2 . 22

7 Illustration of the notation . 23

8 Illustration for the proof of Lemma 8. The dashed line segments repre-

sent edges between points in Pt(p, q). The boxes with dashed borders

represent boxes of Pt(p, q). The dash dotted line segment represents

the edge between v and d. 24

9 Illustration of Theorem 3 (a) with the bounding boxes with the lengths

of the edges and (b) with the angles. 26

10 Illustration of the Enlarging step of Algorithm 6. 28

11 Illustration of the cases of Lemma 14. 35

12 Illustration of a point set {v, d1, d2, q} where v is the current point, Bd1
is not defined, and Bd2 is defined. 36

vi

Chapter 1

Introduction

A fundamental problem in networking is the routing of a message from one vertex

to another in a graph. Because network resources are limited, it is often desirable

that routing algorithms use as little memory as possible. At one extreme in this

direction are local routing algorithms where the routing algorithm must choose the

next vertex to forward a message to based solely on knowledge of the destination

vertex, the current vertex and some information about all vertices directly connected

to the current vertex. When a local routing algorithm is not possible, it is still

desirable that a routing algorithm use as little memory as possible.

In many settings, it is natural to model a network as a geometric graph, that is,

a graph whose vertices are points and each edge is a line segment whose weight is

the Euclidean distance between its two endpoints. For example, geometric routing

algorithms are important in wireless sensor networks (see [21] for a survey of the area)

since routing strategies can take advantage of the fact that nodes in these networks

have physical locations that can be used to help guide a packet to its destination.

1.1 Motivation

A geometric routing algorithm is said to be competitive if the length of all paths

produced by the routing algorithm is not more than a constant times the Euclidean

distance between its endpoints. This smallest such constant is called the routing

ratio. In order to find a competitive path (i.e. a path that satisfies the routing ratio)

between any two vertices of a graph, such a path must first exist. Graphs that meet

1

2

this criterion are called (geometric) spanners. Formally, given a geometric graph G,

the distance, dG(u, v), between two vertices u and v in G is the sum of the weights of

the edges in the shortest path between u and v in G. The graph G is a t-spanner if

there exists a t ≥ 1 such that for all pairs of vertices u and v in G, dG(u, v) ≤ t · |uv|.
Here |uv| denotes the Euclidean distance between u and v. The smallest value t

for which G is a t-spanner is the spanning ratio or stretch factor of G. A family of

graphs that are t-spanners, for some fixed constant t, are often referred to as simply

spanners. Spanners have been extensively studied—for a detailed overview of results

on geometric spanners, see the book by Narasimhan and Smid [22].

Geometric spanners tend to fall into three categories: (i) Long-known geometric

graphs that happen to be spanners, such as Delaunay triangulations; (ii) cone-based

constructions, such as Keil’s θ-graphs [20]; and (iii) well-separated pair decomposi-

tion(WSPD) based constructions introduced by Callaghan and Kosaraju [14]. Note

that graphs in the first category have fixed worst-case spanning ratios bounded away

from 1. Constructions in the second and third categories are designed for a given

parameter. They can achieve spanning ratios arbitrarily close to 1 by choosing arbi-

trarily small values for this parameter. Significant work has gone into finding com-

petitive local and low-memory routing algorithms for graphs in the first category,

including Delaunay graphs (classical–, L1–, L∞–, TD–, and generalized convex De-

launay triangulations) [6, 7, 10, 11, 15]. In most cases, proving tight spanning ratios

and routing ratios for graphs in this category is difficult. For example, even the exact

spanning ratio of the Delaunay triangulation is unknown, despite over 30 years of

study [9, 17,20,23].

For the second category—cone-based spanners—competitive local routing algo-

rithms are usually trivial. These spanners are designed so that greedy choices pro-

duce paths of low stretch. Still, for certain cone-based spanners, there have been

some refined results on competitive routing algorithms that produce exceptionally

low competitive ratios. For example, Bose et al [10] present a routing algorithm for

the TD-Delaunay triangulation (which is equivalent to the Half-θ6-graph) with a com-

petitive ratio of 2.887. They prove that this is optimal, thereby proving a separation

between the routing ratio and the spanning ratio of a graph since the spanning ratio

of the TD-Delaunay triangulation is 2 [16].

3

1.2 Problem Statement

In this thesis, we consider routing algorithms for the third category: WSPD-based

spanners. Intuitively, a WSPD of a pointset is a partition of the edges of the complete

geometric graph (on that pointset) such that all edges in the same partition are

approximately of equal length.1 Since its introduction by Callahan and Kosaraju [14],

the WSPD andWSPD-based spanners have found a plethora of applications in solving

distance problems [22]. The main difficulty about local routing in these spanners

stems from the fact that WSPD-spanners are based on WSPDs that are built globally

and capture global distance properties of the given pointset. As such WSPD-spanners

pose a challenge in designing local routing strategies.

WSPDs have been used before as an aid to routing in unit-disk graphs by Kaplan

et al. [19]. Their scheme applies to our setting when the unit distance is the diameter

of the point set. However, in that case, they route on an ε-net of the point set.

Therefore, they are not routing purely on a WSPD-spanner of the complete graph of

the point set but they are routing on the subset of the points that forms the ε-net.

In the case where the unit disk graph has diameter at least 2, their routing scheme

requires a header of O(log n logD) bits, where D is the diameter. It also requires

routing tables of size O(ε−5 log2 n log2D) bits per vertex and, therefore, the total size

of the routing tables is O(nε−5 log2 n log2D) bits. Their routing ratio is 1 + ε where

ε = (α/s) log |pq| (or s = (α/ε) log |pq|) with α ≥ 192 and |pq| ≤ D ≤ n. Note that

our scheme is slightly different and therefore incomparable since it is routing on a

WSPD-spanner.

1.3 Contribution

Given a pointset and a separation ratio s, a WSPD with separation ratio s is (typ-

ically) not unique. Callahan and Kosaraju’s original construction of a WSPD is

based on fair split-trees and it computes a WSPD containing a linear number of edge

partitions [14]. From this WSPD, we show how to construct a WSPD-spanner that

facilitates local routing by selecting a well-chosen edge from each partition rather than
1See the next section for the formal definition.

4

picking an arbitrary edge (see Section 3.2). As a side benefit, our WSPD-spanner has a

slightly improved spanning ratio, 1+4/s+4/(s−2), over the original one, 1+8/(s−4).

This improvement stems from the additional properties of our well-chosen edges. On

this WSPD-spanner, we present a 2-local and a 1-local routing algorithm with com-

petitive routing ratios of 1+6/(s−2)+4/s and 1+8/(s−2)+4/s+8/s2, respectively

(see Sections 3.3 and 3.4). A routing algorithm on a graph G is k-local for k ≥ 1

if each vertex v of G stores information about vertices that are at a hop distance

of at most k from v. The hop distance between two vertices p and q is k if the

minimum number of edges to traverse in order to reach q from p is k. Our local

routing algorithms do not use a header. Our 2-local and 1-local routing algorithms

require routing tables of total size O(s2n2B) and O(s2nB) bits, respectively, where

B is the maximum number of bits to store a bounding box. Ideally, one would like

the routing ratio to be identical to the spanning ratio, however, this is rarely the case

when routing locally since an adversary can often force an algorithm to stray from the

actual shortest path. Finally, we prove a lower bound of 1+8/s on the spanning ratio

of our WSPD-spanner, thereby proving the near-optimality of the spanning ratio of

our WSPD-spanner and the near-optimality of the routing ratios of both our routing

algorithms.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents a literature review

of the main results on the well-separated pair decomposition. We begin by stating

results about on WSPD-spanners. This is then followed by results about applications

of the well-separated pair decomposition. Chapter 3 presents our results together

with proofs. Finally, Chapter 4 gives a summary of our results and directions about

future research.

Chapter 2

Background

In this chapter, we present a literature review related to the subject of this thesis.

Section 2.1 gives some definitions that will be useful throughout this thesis. Sec-

tion 2.2 discuss known results on WSPD-spanners. Finally, Section 2.3 discusses the

well-separated pair decomposition and its application to geometric problems.

2.1 Definitions

A network (or graph) G = (V,E) is represented by its set of vertices V and its set

of edges E. A local routing algorithm in a network G routes a message (or packet)

by finding a path from a vertex p ∈ V to a vertex q ∈ V by making a sequence of

local decisions. A decision from a vertex v is said to be local if the choice of the

next vertex to forward the message to depends only on information accessible from

v. The goal is to design a local routing algorithm that uses the smallest amount of

local information.

Formally, a 1-local routing algorithm as defined in [8] is a function f : V × V ×
V × P(V) → V , where P(V) is the power set of V . The arguments of the function

f(v, p, q,N (v)) = w are the current vertex v in the path, the source p of the path,

the destination q of the path, the set of neighbors N (v) of v, and the next vertex w

on the current path. Our definition of 1-local deviates slightly since in addition to

the coordinates of the neighbors in N (v), we require some additional information to

be stored based on the construction of the WSPD. In Chapter 3, we define precisely

what additional information is stored. For the remainder of the thesis, when we refer

5

6

to 1-local, we will refer to this enhanced definition. Let k ≥ 1 be an integer. We say

that a local routing algorithm is k-local if each vertex v has access to the graph Gk(v)

which consists of the subgraph of G induced by all vertices at hop-distance at most

k from v.

In this thesis, we consider geometric networks. A geometric network is a network

where the vertices are points in the plane and the edges are straight line segments.

We consider the Euclidean length of an edge to be its weight. When routing in a

geometric network, the length of the path found by the algorithm is the sum of the

lengths of all the edges of the path. Let Ppq be the path produced by a routing

algorithm from p to q. The routing ratio is defined as maxx,y∈V
|Pxy |
|xy| , where |Pxy| is

the length of Pxy and |xy| is the Euclidean distance between x and y. A routing

algorithm is competitive if it has a constant upper bound on its routing ratio. The

spanning ratio of a geometric graph is defined as maxx,y∈V
|SPxy |
|xy| , where SPxy is the

shortest path from x to y in the graph. A graph is a t-spanner if and only if its

spanning ratio is at most t for some t > 1. In this thesis, when we refer to a graph

as a spanner, we mean that t is a constant.

2.2 WSPD-Spanner

The well-separated pair decomposition (WSPD) of the complete Euclidean graph

defined on points in Rd (where d ≥ 1 is an integer), introduced by Callahan and

Kosaraju [14], is a technique for partitioning the edges of the complete graph based

on length into a linear number of sets (see formal definition in Section 2.3). In Calla-

han and Kosaraju’s spanner construction [12], an arbitrary edge is selected from each

partition in the WSPD of the point set. The endpoints of the edge are called rep-

resentatives of their respective point set in the pair. They proved that the resulting

graph is a spanner with a spanning ratio of at most 1 + 8/(s − 4), where s is called

the separation ratio of the WSPD. It is important to note that since Callahan and

Kosaraju [14] proved that the number of pairs is linear in O(sdn), the number of edges

of the spanner is also linear.

WSPDs have been used before as an aid to routing in a slightly different setting

than ours. Kaplan et al. [19] used WSPDs to locally route on unit-disk graphs. Their

7

routing scheme requires a header of O(log n logD) bits, where D is the diameter. It

also requires routing tables of size O(ε−5 log2 n log2D) bits per vertex and, therefore,

the total size of the routing tables is O(nε−5 log2 n log2D) bits. Their routing ratio is

1 + ε where ε = (α/s) log |pq| (or s = (α/ε) log |pq|) with α ≥ 192 and |pq| ≤ D ≤ n.

2.3 Well-Separated Pair Decomposition

Two point sets A and B are well-separated if and only if there are two circles with

the same radius ρ respectively enclosing A and B and the minimum distance between

the circles is sρ, where s > 0 is called the separation ratio.

Definition 1 (Well-Separated Pair Decomposition (WSPD)). The well-separated

pair decomposition (WSPD) of a point set S ⊆ Rd is a set of well-separated pairs

{{A1, B1}, {A2, B2}, . . . , {Am, Bm}} such that for any distinct points p and q in S,

there is a unique pair {Ai, Bi}, 1 ≤ i ≤ m, such that p ∈ Ai and q ∈ Bi, or p ∈ Bi

and q ∈ Ai.

Originally, Callahan and Kosaraju [14] introduced the well-separated pair decom-

position to compute the potential fields of particles in particle simulations. With a

naive algorithm, the potential fields of particles (modeled as points) can be computed

in O(n2) time. Using a WSPD of the point set, they showed how to compute it in

O(n) time. In the same paper, they also used the WSPD to compute the k-nearest

neighbors of a point in O(kn) time. In another paper [13], they showed how to dy-

namically insert and delete points in a WSPD in O(log2 n) time. They also showed

how to maintain the closest pair of points in a point set in O(log2 n) using a dynamic

WSPD.

As mentioned in Section 2.2, Callahan and Kosaraju [12] also showed how to

construct a spanner of a point set with a WSPD. Recall that, in this construction, an

edge is added between the representatives of the pairs of the WSPD. Notice that these

representatives are chosen arbitrarily. By choosing them more carefully, it is possible

to obtain spanners with additional interesting graph properties. The properties most

addressed in the literature are bounded diameter, bounded degree, and low weight.

The diameter of a graph is the maximum number of edges in the shortest path between

8

any two vertices in the graph. The degree of a vertex is its number of neighbors. The

weight w(G) of a graph G is the sum of the Euclidean lengths of the edges of the

graph. We usually compare the weight of a spanner to the weight of its minimum

spanning tree (MST) which is noted w(MST). The MST of a graph is a connected

spanning subgraph of minimum weight.

In this thesis, we say that a spanner is WSPD-based when it is constructed from

a WSPD but other transformations may be subsequently applied. For instance, no-

body knows how to get a WSPD-spanner with bounded degree without applying

subsequent transformations to a WSPD-spanner. Arya et al. [4, 5] obtained sev-

eral results regarding these properties in WSPD-based spanners. Narasimhan and

Smid [22] detailed proofs of the bounds found by Arya et al. Aryal et al. showed how

to construct a WSPD-based spanner with maximum degree O(1/(t− 1)2d−1). Using

Callahan and Kosaraju’s construction of the WSPD and by carefully choosing the

representatives, they proved that there exist WSPD-spanners with a diameter of at

most 2 log(n)− 1. In this thesis, the logarithm is base 2. Furthermore, they showed

that the same construction produces spanners of weights O(w(MST) log n). Using

dumbbell trees, which are an extension of Callahan and Kosaraju’s construction of

the WSPD, they also showed constructions of spanners with constant bounded diam-

eter and sub-quadratic number of edges. See Table 1 for detailed bounds. Finally,

using these results on spanners with constant bounded diameter, they showed how

to construct spanners with bounded degree, sub-quadratic number of edge, O(log n)

diameter, and weight of O(w(MST) log2 n). It is unknown whether the weight can

be decreased to O(w(MST) log n).

After their discovery of the well-separated pair decomposition, Callahan and

Kosaraju [12] explored approximate and exact Euclidean minimum spanning trees

(EMST). An ε-approximation of the EMST of a point set is a spanning tree of

the point set that has a weight of at most (1 + ε)w(EMST). They gave a sim-

ple ε-approximation which consists of computing the WSPD-spanner and then com-

puting the mininum spanning tree of that spanner. The value of s is set to

4/ε. This approximation is computable in time O(ε−dn log n) which is better than

generic MST algorithms in d > 2 dimensions computing MSTs in O(n2 log n) time.

They also gave a more complex ε-approximation independent of s computable in

9

Diameter Number of edges

2 O
(

log(1/(t−1))
(t−1)d n log n

)
3 O

(
log(1/(t−1))

(t−1)d n log log n
)

2k for k ≥ 4 O
(

log(1/(t−1))
(t−1)d 2knαk(n)

)
O(α(n)) O

(
log(1/(t−1))

(t−1)d n
)

At most 2 log(n)− 1 O(sdn)

where α : N→ N is the inverse Ackermann function and αk : N→ N is defined as
follows.

α2k(n) = min{s ≥ 0 : Ak(s) ≥ n}
α2k+1(n) = min{s ≥ 0 : Bk(s) ≥ n}

A0(n) = 2n, for all n ≥ 0,

Ak(n) =

 1 if k ≥ 1 and n = 0,

Ak−1(Ak(n− 1)) if k ≥ 1 and n ≥ 1.

B0(n) = n2, for all n ≥ 0,

Bk(n) =

 2 if k ≥ 1 and n = 0,

Bk−1(Bk(n− 1)) if k ≥ 1 and n ≥ 1.

Table 1: List of WSPD-based spanners with bounded diameters

10

O(n log n + (ε−d/2 log 1
ε
)n) time. Agarwal et al. [1] presented a relation between the

EMST and the bichromatic closest pair. In the bichromatic closest pair problem, we

have n blue points and m red points and the goal is to find the closest pair containing

a blue point and a red point. Let Td(n,m) be the time to compute the bichromatic

closest pair. Callahan and Kosaraju [12] showed how, using the WSPD, to com-

pute the EMST of a point in O(Td(n, n) log n) time in general and in O(Td(n, n)) if

Td(n, n) = Ω(n1+α) for a constant α > 0. This is not better than the algorithm found

by Agarwal et al. but gives some insight to the relation of the EMST problem and

the bichromatic closest pair problem.

For a complete review on WSPDs with all the theorems and proofs, see the book

by Narasimhan and Smid [22].

Chapter 3

Results

3.1 Preliminaries – Construction of the WSPD

For the rest of this thesis, our setting is the Euclidean plane i.e. R2. There are many

ways to construct a WSPD (for instance, using quadtrees [18]). In our setting, we use

the construction by Callahan and Kosaraju [14] which is based on a data structure

called the split tree. To define the concept of a split tree, we first need to define

the concept of bounding box. A bounding box of a point set S, denoted R(S), is the

smallest axis-parallel rectangle containing S.

The split tree is a binary tree defined as follows. Take the bounding box R(S)

of the point set S and store it at the root u of the split tree. Then, split R(S) on

its longest side and store the bounding boxes of the two resulting subsets of S in the

children of u. Repeat this recursively for each child until the leaves are the points

of S. The set of points in the subtree rooted at node u is denoted Su. We also use

the notation Ru interchangeably with R(Su) to talk about the bounding box of Su.

To summarize, each internal node u of the split tree stores its bounding box Ru, and

pointers to its two children. Each leaf stores a point of S which will be considered as

the bounding box of u. See Algorithm 1 for the construction of a split tree.

A WSPD of a point set S is then computed using the split tree of S. Let T

be the split tree of S and s > 0 be the desired separation ratio. Let v and w be

two nodes of T . We compute whether Sv and Sw are well-separated with respect to

s by using the bounding boxes Rv and Rw instead of Sv and Sw. Then, a WSPD

for S is computed by calling ComputeWSPD(T , s) (refer to Algorithm 2), which

11

12

Algorithm 1 SplitTree(S)

Input: A point set S.
Output: The (root of the) split tree of S.

Let u be an empty node.
if |S| = 1 then

Store the only point of S in u. // Note that we consider this point to be the
bounding box Ru

else
Compute the bounding box R(S)
Split R(S) along its longest side into two same-size rectangles R1 and R2.
Sv := S ∩R1

Sw := S \ Sv
v := SplitTree(Sv)
w := SplitTree(Sw)
Store v and w as the left and right children of u, respectively.
Ru := R(S)

end if
return u

(a) First split (b) Following splits

Figure 1: Illustration of the split tree

Algorithm 2 ComputeWSPD(T , s)

Input: The split tree T , and the separation ratio s.
Output: A WSPD.
for each internal node u of the split tree T do

Let v and w be the left and right children of u, respectively.
FindPairs(v, w, s)

end for

13

calls FindPairs(v, w) (refer to Algorithm 3). Callahan and Kosaraju proved that

Algorithm 3 FindPairs(v, w, s)

Input: Two nodes v and w of a split tree, and the separation ratio s.
Output: A set of well-separated pairs {{A1, B1}, {A2, B2}, . . . , {Am, Bm}} such that

for any point p ∈ Sv and any point q ∈ Sw, there is a unique pair {Ai, Bi},
1 ≤ i ≤ m, such that p ∈ Ai and q ∈ Bi.
if Sv and Sw are well-separated with respect to s then

Report the pair {Sv, Sw}
else if Lmax(Rv) ≤ Lmax(Rw) then // Let the function Lmax(·) be the longest side
of a bounding box.

Let wl and wr be the left and right children of w, respectively.
FindPairs(v, wl)
FindPairs(v, wr)

else
Let vl and vr be the left and right children of v, respectively.
FindPairs(vl, w)
FindPairs(vr, w)

end if

this algorithm produces a linear number of pairs [14]. The following lemma gives

properties about the points in a pair of a WSPD.

Lemma 1 (Callahan and Kosaraju [12]). Let {A,B} be a well-separated pair with

respect to the separation ratio s > 0. Let p, p′, p′′ ∈ A and q, q′ ∈ B. Then,

• |p′p′′| ≤ (2/s)|pq|

• |p′q′| ≤ (1 + 4/s)|pq|

3.2 Construction of t-Spanners Using WSPDs

In this section, we show how to construct a WSPD-spanner on which our routing

results are based. We also prove some useful geometric lemmas concerning these

spanners. Callahan and Kosaraju’s [14] classical construction of a spanner given a

WSPD proceeds as follows: for each well-separated pair {A,B}, select an arbitrary

point a ∈ A as a representative of the set A and an arbitrary point b ∈ B as a

representative of the set B and add the edge ab to the graph. Callahan and Kosaraju

14

[12] proved that any WSPD-spanner constructed this way has a spanning ratio of at

most 1 + 8/(s− 4), where s is the separation ratio of the WSPD.

To facilitate the design of our routing algorithm, rather than selecting an arbi-

trary point as the representative of a set in a pair, we choose the rightmost point as

the representative. If there is more than one rightmost point, we choose the topmost

point among the rightmost ones. The following definitions define three types of span-

ners based on WSPDs, depending on how the WSPD was constructed and how the

representatives are chosen.

Definition 2 (AW-Spanner). An AW-Spanner (AW for “Arbitrary WSPD”) is a

spanner based on a WSPD where the choice of the representative of each set in a

well-separated pair of the WSPD is arbitrary.

Definition 3 (ASW-Spanner). An ASW-Spanner (ASW for “Arbitrary representa-

tive, Split tree, WSPD”) is a spanner based on a WSPD computed with a split tree

where the choice of the representative of each set in a well-separated pair of the WSPD

is arbitrary.

Definition 4 (RSW-Spanner). An RSW-Spanner (RSW for “Rightmost representa-

tive, Split tree, WSPD”) is a spanner based on a WSPD computed with a split tree.

Moreover, the representative of each set in a well-separated pair of the WSPD is cho-

sen such that it is the rightmost point of the set. If there is more than one rightmost

point, the topmost point among the rightmost ones is chosen.

In this thesis, we explain how to do local routing in RSW-Spanners. One reason

for using the pairs of a WSPD constructed with a split tree is the fact that the number

of pairs is linear in the number of points in S, if we assume that s is a constant [14].

This implies that the resulting spanner has a linear number of edges. Moreover, the

way that representatives are chosen in a RSW-Spanner gives us several geometric

properties that can be exploited. Thus, in the remainder of the chapter, unless stated

otherwise, we focus on RSW-Spanners.

In Theorem 1, by exploiting properties of the split tree, we prove that the spanning

ratio of ASW-Spanners is at most 1 + 4/(s− 4) + 4/s which is a slight improvement

over the spanning ratio of 1 + 8/(s− 4), shown for AW-Spanners. In Theorem 2, we

15

make a further improvement to 1+4/(s−2)+4/s for RSW-Spanners. Before proving

this, we begin with some helper lemmas.

Lemma 2. Let u and v be any two nodes in a split tree. If u is an ancestor of v,

then Sv ⊂ Su. Otherwise, Sv ∩ Su = ∅.

Proof. Let Su and Sv be two point sets associated to u and v. When the bounding box

of a node x is split into two in the construction of the split tree (refer to Algorithm 1),

the sets associated to the two children of x are disjoint and are subsets of the set

associated to x. Hence, Su and Sv are either disjoint sets or one is a subset of the

other.

Lemma 3. In an RSW-Spanner, consider two sets A and C each from a different

pair of the WSPD. Let a be a representative of A. If C ⊆ A and a ∈ C, then a is

also the representative of C.

Proof. Since C ⊆ A and a is the rightmost, topmost point of A, then a is also the

rightmost, topmost point in C. Thus, a is the representative of C.

Lemma 4. In an RSW-Spanner, let A be a set in a pair from the WSPD and let

a, x ∈ A be two points such that a is the representative of A and x 6= a. There is a

well-separated pair {C,D} such that:

• a ∈ C;

• x ∈ D;

• a is the representative of C;

• C is a proper subset of A;

• D is a proper subset of A.

(refer to Figure 2b).

Proof. Let {C,D} be the pair that separates a from x. Therefore, C and D must be

disjoint. Since a and x are in A, we have that C and D are both disjoint subsets of A

by Lemma 2. We have that a is the representative of C by Lemma 3. See Figure 2b

for an illustration.

16

a

R(A)

a

R(A′)

(a) Illustration of Lemma 3. The split of R(A) and the two bounding
boxes obtained during the construction of the split tree. Notice
that a is the representative of R(A′).

A

ax

A

C

D ax

(b) Illustration of Lemma 4. The pair {C,D} separating a from x.

Figure 2: Illustration of Lemma 3 and Lemma 4

Let [x, a] be an edge in an RSW-Spanner such that a is the representative of a

bounding box A containing x. Let C be a bounding box smaller than A that contains

x in the WSPD. Lemma 5 states that the representative c of C has an edge to the

representative a of A. Lemma 6 states that a has an edge to the representatives

of some bounding boxes such that their union contains all the points of which C is

well-separated from.

Lemma 5. In an RSW-Spanner, let C be a set in a pair from the WSPD and let

c, x ∈ C be two points such that c is the representative of C and x 6= c. Let A be a set

in a pair from the WSPD such that C ⊂ A and a point a ∈ A is the representative of

A. If [x, a] is an edge, then [c, a] is an edge (Refer to Figure 3).

Proof. We claim that during the construction of the WSPD, there is a call to Find-

Pairs(u, v), where Ru = R(C), a ∈ Sv and Sv ⊂ A. Before proving our claim, let us

show how applying the claim proves the lemma. By Lemma 3, a is the representative

of all sets containing a in all pairs reported from this call since a is a representative of

Rv. Similarly, the representative c of C is also the representative of all sets containing

17

x

C

A

D

B

ac

Figure 3: Illustration of Lemma 5. Connected circles represent pairs in the WSPD.

c in all pairs reported from this call. Thus, the representative c of C has an edge to

a.

Let us now prove our claim. Let FindPairs(u′, v′) be the call where the pair

separating x from a is reported such that x ∈ Su′ and a ∈ Sv′ without loss of

generality. Since x is not the representative of R(C), x is not the rightmost, topmost

point of R(C). Therefore, R(C) must be the bounding box of an ancestor of u′,

and Su′ ⊂ C. Thus, since Su′ ⊂ C, and a /∈ C, there must have been a call to

FindPairs(u, v) where Ru = R(C), and a ∈ Sv. By Lemma 2, since C ⊂ A, a ∈ A,
and two sets in a pair are disjoint, we get Sv ⊂ A.

Lemma 6. In an RSW-Spanner, let {A,B} and {C,D} be two distinct pairs from

the WSPD, such that C ⊂ A. Let a be the representative of A. Let x be any point in

D and let {E,F} be the unique pair from the WSPD separating a ∈ E from x ∈ F .
Then, a is the representative of E (Refer to Figure 4).

Proof. We consider two cases. Either x ∈ A or x /∈ A. If x ∈ A, the result follows

from Lemma 4. Otherwise, if x /∈ A, consider the call to FindPairs(u′, v′) that

reports the pair {C,D}. From the algorithm FindPairs, we know that Ru′ = R(C)

and Rv′ = R(D). By Lemma 2, since x /∈ A, we know that D ∩A = ∅. Since C ⊂ A,

D∩A = ∅ and Rv′ = R(D), there must have been a call to FindPairs(u, v) that led

to the call FindPairs(u′, v′), where u is an ancestor of u′, Ru = R(A) and D ⊂ Sv.

By Lemma 3, since a is the representative of A, we get that a is the representative of

18

C

A

D

B

a
x

(a)

C

A

D

B

a
x

E

F

(b)

Figure 4: Illustration of Lemma 6

all sets containing a in all pairs reported from the call to FindPairs(u, v). Thus, a

is representative of the set separating a from x ∈ D.

Algorithm 4 finds a path between p and q in an AW-Spanner and is derived from

the proof of Theorem 9.2.1 by Narasimhan and Smid in [22].

Algorithm 4 FindPath(p, q)

Precondition: p 6= q
Let {A,B} be the unique pair in the WSPD separating p ∈ A from q ∈ B.
Let a and b be the representatives of A and B.
return FindPathRec(p, a, A), FindPathRec(b, q, B)

We consider the level of recursion to be 1 during the execution of the first call of

FindPathRec and k when executing the k-th call in the execution stack of Find-

PathRec from an initial call of FindPath.

19

Algorithm 5 FindPathRec(v, w, E)

Precondition: v, w ∈ E,
either v or w is the representative of E.

if v = w then
return v

else
Let {C,D} be the pair in the WSPD separating v ∈ C from w ∈ D.
Let c and d be the representatives of C and D, respectively.
return FindPathRec(v, c, C), FindPathRec(d, w, D)

end if

Lemma 7. Let p, q ∈ S. Consider a call to FindPath(p, q) in an ASW-Spanner of

S. Consider the call to FindPathRec(v, w, E) at recursion depth k ≥ 1. For any

two points e, f ∈ E, |ef | ≤ (2/s)k|pq|.

Proof. We prove this lemma by induction.

Base case: k = 1

Let {A,B} be the pair that separates p ∈ A from q ∈ B. Since k = 1, E = A

or E = B, e and f are either both in A or both in B. By Lemma 1, we get that

|ef | ≤ (2/s)|pq|.
Induction step: Let k > 1. Let FindPathRec(v′, w′, E ′) be the parent call of

FindPathRec(v, w, E). Thus, the call FindPathRec(v′, w′, E ′) is at level k − 1.

Consider two arbitrary points e′, f ′ ∈ E ′. By the induction hypothesis, we have

|e′f ′| ≤ (2/s)k−1|pq|.
Let {C ′, D′} be the pair in the WSPD separating v′ ∈ C ′ from w′ ∈ D′. By

definition of FindPathRec, E = C ′ or E = D′. Thus, e and f are either both

in C ′ or both in D′. Observe that v′, w′ ∈ E ′ according to the preconditions of

FindPathRec(v′, w′, E ′). By Lemma 1, we get that |ef | ≤ (2/s)|v′w′|. From

the induction hypothesis, we have that |v′w′| ≤ (2/s)k−1|pq|. Thus, we get that

|ef | ≤ (2/s)(2/s)k−1|pq| = (2/s)k|pq|.

The following two theorems give upper bounds on the spanning ratios of ASW-

Spanners (Theorem 1) and RSW-Spanners (Theorem 2). The only difference is in the

choice of representatives. The proofs of Theorems 1 and 2 are similar.

Theorem 1. The spanning ratio t of an ASW-Spanner is at most 4/(s−4)+4/s+1.

20

Proof. We find an upper bound on the spanning ratio of a path from p to q by

analyzing the path found by FindPath(p, q). Consider only one of the two calls to

FindPathRec in FindPath(p, q). Let FindPathRec(v, w, E) be the considered

call. Notice that we are considering all subsequent calls to FindPathRec following

the call to FindPathRec(v, w, E) in FindPath(p, q). Since we are only considering

one call to FindPathRec in FindPath(p, q), each level k ≥ 1 of recursion in

FindPathRec(v, w, E) can have at most 2k−1 instances, i.e. there are at most

2k−1 edges [c, d] at depth k in the recursion. Notice that v, w ∈ E according to the

preconditions of FindPathRec(v, w, E). Therefore, by Lemma 2, c and d are also

both in E. From Lemma 7, we get |cd| ≤ (2/s)k|pq|. Thus, the sum of the length of

all edges [c, d] at level k is bounded by 2k−1
(
2
s

)k |pq|. Then, if we sum up the lengths

of all edges [c, d] from level 1 to a maximum depth m, we get

m∑
i=1

2i−1
(

2

s

)i
|pq| ≤

∞∑
i=1

2i−1
(

2

s

)i
|pq| = 2

s− 4
|pq|.

Let {A,B} be the pair separating p ∈ A and q ∈ B. Let a ∈ A and b ∈ B be

the representatives of A and B, respectively. From Lemma 1, we have that |ab| ≤
(1 + 4/s)|pq|.

To bound the path found by FindPath(p, q), we take the length of the path

found by the call to FindPathRec(p, a, A), add the length of the edge [a, b], and

add the length of the path found by the call to FindPathRec(q, b, B). Thus, the

path found by FindPath(p, q) has a length of at most

2 · 2

s− 4
|pq|+

(
1 +

4

s

)
|pq| =

(
4

s− 4
+

4

s
+ 1

)
|pq|.

The following theorem is similar to Theorem 1. Essentially, using Lemma 4, we

show that each level k has only one edge instead of 2k−1 in the previous proof. Thus,

we calculate the spanning ratio according to the choice of representatives of RSW-

Spanners. In the following sections, we will take the path found by FindPath on

RSW-Spanners to prove the correctness and find the routing ratio of our local routing

21

(1 + 4/s)|pq|

A B

(2/s)|pq|

(2/s)2|pq|

(2/s)2|pq|

p q

a b

Figure 5: Illustration of Theorem 1

algorithm.

Theorem 2. The spanning ratio t of an RSW-Spanner is at most 4/(s−2)+4/s+1.

Proof. We find an upper bound on the spanning ratio of a path from p to q by

analyzing the path found by FindPath(p, q). Consider only one of the two calls to

FindPathRec in FindPath(p, q). Let FindPathRec(v, w, E) be the considered

call. Since either v or w is the representative of E, by Lemma 4, we know that either

v or w is the representative of C or D and, thus, either v = c or w = d. This means

that for each level k ≥ 1, the call to FindPathRec(w, d, D) returns immediately. In

other words, for all k ≥ 1, there is exactly one edge of level k. Notice that v, w ∈ E
according to the preconditions of FindPathRec(v, w, E). Therefore, by Lemma 2,

c and d are also both in E. From Lemma 7, we get |cd| ≤ (2/s)k|pq|. The fact that

there is exactly one edge of level k allows us to get only (2/s)k as the sum of the length

of all edges at level k. This contrasts with Theorem 1 where this sum is 2k−1(2/s)k.

Then, if we sum up the length of all edges [c, d] from level 1 to a maximum depth m,

we find
m∑
i=1

(
2

s

)i
|pq| ≤

∞∑
i=1

(
2

s

)i
|pq| = 2

s− 2
|pq|.

Let {A,B} be the pair separating p ∈ A and q ∈ B. Let a ∈ A and b ∈ B be

the representatives of A and B, respectively. From Lemma 1, we have that |ab| ≤
(1 + 4/s)|pq|.

22

(1 + 4/s)|pq|

A B

(2/s)|pq|

(2/s)2|pq|

p q

a b

Figure 6: Illustration of Theorem 2

To bound the path found by FindPath(p, q), we take the length of the path

found by the call to FindPathRec(p, a, A), add the length of the edge [a, b], and

add the length of the path found by the call to FindPathRec(q, b, B). Thus, the

path found in FindPath(p, q) has a length of at most

2 · 2

s− 2
|pq|+

(
1 +

4

s

)
|pq| =

(
4

s− 2
+

4

s
+ 1

)
|pq|.

We now define some notation that will be useful throughout the rest of this thesis.

Each pair of sets in a WSPD is associated with a pair of bounding boxes. Let

{X, Y } be the unique pair in the WSPD that separates a point x ∈ X from a point

y ∈ Y . There are two bounding boxes defined with respect to X and Y , namely

R(X) and R(Y). To refer to these bounding boxes from the perspective of x and

y, we use the following notation: R(X) is referred by Bxy(x), and R(Y) is referred

by Bxy(y). Notice that Bxy(x) = Byx(x) = R(X), Bxy(y) = Byx(y) = R(Y) and

Bxy(y) 6= Bxy(x). Let y∗ be the representative of Y . We can say that y∗ is the

representative of Bxy∗(y
∗) = Bxy(y) = R(Y). Therefore, y∗ has an edge to the

representative of Bxy∗(y
∗). See Figure 7 for illustration.

Furthermore, we denote by Pt(p, q) the path from a point p to a point q with

spanning ratio t, found by the FindPath algorithm in an RSW-Spanner. Let v be

23

X Y

x
y∗

Bxy(x)
Bxy(y) = Bxy∗(y∗)

y

The point y∗ is the representative of
Bxy∗(y∗) = Bxy(y) and has an edge
leading to the representative of a bound-
ing box containing x, i.e. Bxy(x).

Figure 7: Illustration of the notation

a point of Pt(p, q) in Bpq(p) but not representative of Bpq(p). Let Bv be the largest

bounding box with v as representative. Suppose that p is in Bv. Lemma 8 establishes

a relation between Bv and the bounding boxes containing p of the points of Pt(p, q).

Lemma 8. Consider any RSW-Spanner. Let p, q and v be three points such that:

• v is inside Bpq(p);

• v is not the representative of Bpq(p);

• p is in Bv (the largest bounding box that v is representative of).

There must exist an edge [d, e] of Pt(p, q) such that Bde(d) is the smallest bounding

box containing p that is larger than Bv. Then, there is an edge between v and d.

Proof. We first argue that the edge [d, e] is well-defined. Since v is inside Bpq(p) but

is not the representative of Bpq(p), we know that Bv is smaller than and inside Bpq(p)

by Lemma 2 and 3, respectively. This implies that the set of edges [α, β] from Pt(p, q)

such that p is in Bαβ(α) and Bv is smaller than Bαβ(α) is non-empty. Indeed, the

edge [a, b] from Bpq(p) to Bpq(q) is in this set since Bab(a) = Bpq(p). Therefore, the

edge [d, e] is well-defined.

Let c be the point before d in Pt(p, q). Since d is in Pt(p, q), then d is representative

of Bde(d). Therefore, by Lemma 4, we know that d is the representative of Bpd(d)

and c is the representative of Bpd(p) since it is the unique pair separating p from d.

Then, c is the representative of Bcd(c) = Bpd(p) such that p is in Bcd(c). Refer to

Figure 8 for illustration.

24

v

c

d

Bv

Bde(d)

Bcd(c)

p

Pt(p, q)

Bpq(p)

Figure 8: Illustration for the proof of Lemma 8. The dashed line segments represent
edges between points in Pt(p, q). The boxes with dashed borders represent boxes
of Pt(p, q). The dash dotted line segment represents the edge between v and d.

Because Bde(d) is the smallest bounding box containing p larger than Bv, c ∈
Bcd(c) ⊆ Bv. If v = c is the representative of Bcd(c), then v has an edge to d.

Otherwise, Bcd(c) ⊂ Bv and we apply Lemma 5 in the following way. We have that c

is in Bv, Bv ⊂ Bde(d), d is the representative of Bde(d) and there is an edge between

c and d. Therefore, there is an edge from v to d by Lemma 5.

The next theorem presents a non-trivial lower bound on the spanning ratio of an

RSW-Spanner.

Theorem 3. For any s > 0, there exist an RSW-Spanner with a spanning ratio

arbitrarily close to 1 + 8/s.

Proof. Let 0 < ε < π be a real number. Let S = {p, p′, q, q′} be a point set such that:

p = (cos(π/2 + ε), sin(π/2 + ε)),

p′ = (cos(−π/2 + ε), sin(−π/2 + ε)),

q = (cos(−π/2− ε), sin(−π/2− ε) + s+ 2),

q′ = (cos(π/2− ε), sin(π/2− ε) + s+ 2)

25

(refer to Figure 9).

Let A = {p, p′} and B = {q, q′}. By construction, there is a pair {A,B} in

the WSPD. Again by construction, p′ is the representative of R(A) and q′ is the

representative of R(B). Hence, the only path between p and q is pp′q′q. We have

lim
ε→0
|pp′| = lim

ε→0

√
(cos(π/2 + ε)− cos(−π/2 + ε))2 + (sin(π/2 + ε)− sin(−π/2 + ε))2

= 2.

Similarly,

lim
ε→0
|qq′| = 2,

lim
ε→0
|p′q′| = s+ 4,

lim
ε→0
|pq| = s.

Thus, the spanning ratio of the path between p and q and, therefore, the spanning

ratio of the graph approaches

lim
ε→0

|pp′|+ |p′q′|+ |q′q|
|pq|

=
2 + s+ 4 + 2

s
=
s+ 8

s
= 1 +

8

s

as ε approaches 0.

3.3 2-Local Routing Algorithm

3.3.1 The Algorithm

Recall that we defined local routing as a function f(v, p, q,N (v)) = w that takes

the current point v on the path and decides the next point w on the path using

information about the source p, the destination q and the neighbors N (v) of v. In

our setting, we allow additional information to be stored. In this section, we define

this additional information and then define our algorithm. Essentially, a local routing

algorithm finds a path from p to q by making choices using only local information

26

→ (1 + 4/s)|pq|

→ (2/s)|pq|

→ (2/s)|pq|

q

p

p′

q′

s

(a)

q

p

p′

q′

π/2 + ε

−π/2 + ε

π/2− ε

−π/2− ε

s

1

1

(b)

Figure 9: Illustration of Theorem 3 (a) with the bounding boxes with the lengths
of the edges and (b) with the angles.

27

available at each point of the graph. The goal of this thesis is to do local routing in

spanners constructed using WSPDs. To that end, we chose to work on RSW-Spanners

since they satisfy useful geometric properties we can exploit. We now describe the

additional information that is available at each point, then we describe our local

routing algorithm.

Let v be the current point of the routing path. For all neighbors d of v, and for

all neighbors e of d, we suppose that the following information is available at v:

• the edge [v, d] together with Bvd(v) and Bvd(d);

• the edge [d, e] together with Bde(d) and Bde(e).

Notice that the algorithm knows Bde(d) and Bde(e) even though the current point is

v. The fact that we know Bde(e) makes our algorithm 2-local since e is 2 hops away

from v. In Section 3.4, we will modify our algorithm so that it does not need to know

Bde(e). This will lead to a 1-local routing algorithm with a slightly larger routing

ratio.

We want to find a path between two points p ∈ S and q ∈ S. Let {A,B} be the

unique pair in the WSPD separating p from q. Let a and b be the representatives of

A and B, respectively. The goal for our algorithm is to find a path from p to a, take

the edge [a, b], and then, find a path b from q such that the length of the path from

p to q is at most t|pq|, where t > 1 is a spanning ratio.

To find a path from p to a (what we call the Enlarging step), we use the following

strategy. Let v be the current point on the path from p to a produced by our algorithm

(at the beginning v = p). Here is how our algorithm selects the next edge. The

algorithm verifies if v has a neighbor w such that w is the representative of Bpq(p).

If such a w exists, then the edge [v, w] is chosen by the algorithm. See Figure 10a for

illustration. Otherwise, consider the follow set:

V = {v′ ∈ N (v) | p ∈ Bv′ , v
′ is not the representative of Bv′q(v

′)}

where N (v) denotes the set of neighbours of v. In the proof of Lemma 11, we prove

that V is non-empty and that for any v′ ∈ V , Bv′ is contained in Bpq(p). Then,

28

v

v′ = w

Bv

b

q

v′ 6= w

Bv′ = Bw

Bv′

p

(a) Illustration of the Enlarging step of Algorithm 6, where w is the representative of Bpq(p)

v

v′ = wBv′ = Bw

Bv

a

b

q

v′ 6= w

Bv′

p

(b) Illustration of the Enlarging step of Algorithm 6, where w has no edge leading to the repre-
sentative of a bounding box containing q.

Figure 10: Illustration of the Enlarging step of Algorithm 6.

the next edge chosen by our algorithm is the edge [v, w] such that the size of Bw is

maximized among all w ∈ V . See Figure 10b for illustration.

Upon reaching a, we take the edge [a, b]. To find a path from b to q (what we

call the Reducing step), notice that b must the representative of Bbq(b). Let w be the

representative of Bbq(q). The algorithm takes the edge [b, w]. Then, we repeat this

procedure until the algorithms arrives at q.

Our algorithm is summarized in Algorithm 6. Note that sizeof(Bv′) denotes the

area of Bv′ .

Lemma 9. Algorithm 6 is 2-local.

29

Algorithm 6 FindPathTwoLocal(v, p, q)

Input: the current point v,
the source p,
the destination q.

Output: The next point w on the path.
1: if there is an edge [v, v′] where v′ is the representative of Bvq(q) then // Reducing

step
2: w ← v′

3: else// Enlarging step
4: if there is an edge [v, v′] where v′ is the representative of Bpq(p) then
5: w ← v′

6: else
7: ∀v′ ∈ N (v), let Bv′ be the largest bounding box that v′ is the representative

of.
8: Let V = {v′ ∈ N (v) | p ∈ Bv′ , v

′ is not the representative of Bv′q(v
′)}

9: w ← argmaxv′∈V sizeof(Bv′)
10: end if
11: end if
12: return w

Proof. In Algorithm 6, the information used is the location of the neighbors of v, the

bounding boxes of: the current point v, every neighbor v′ of v, and every neighbor v′′

of every neighbor of v. Notice that the Algorithm 6 needs to know v′′ in order to test

whether v′ is the representative of Bpq(p) or Bv′q(v
′). The knowledge of v′′ makes the

algorithm 2-local.

Lemma 10. In Algorithm 6, the total amount of information stored in the vertices is

equal to O(s2n2B), where B is the maximum number of bits to store a bounding box.

Proof. Let v be the current point of the routing path. For all neighbors d of v, and

for all neighbors e of d, the following information is available at v:

• the edge [v, d] together with Bvd(v) and Bvd(d);

• the edge [d, e] together with Bde(d) and Bde(e).

Since there is a constant number of bounding boxes stored for each edge, we just need

to count the number of edges stored at v and multiply it by the maximum number of

bits B to store a bounding box.

30

Callahan and Kosaraju [14] proved that the number of pairs in a WSPD computed

by the algorithm ComputeWSPD is O(s2n). Thus, there is O(s2n) edges in the

graph. Consider the directed versions of these edges i.e. [x, x′] is a different edge than

[x′, x]. There is still a linear number of directed edges in the graph. The destination

of each directed edge can have at most a linear number of edges. Thus, the total size

of the local information stored in all vertices is O(s2n)O(n)B = O(s2n2B) bits.

Observe that a bounding box is uniquely defined by at most four points. Thus, in

the statement of Lemma 10, B is at most the number of bits required to store four

points.

3.3.2 Correctness

In this section, we prove the correctness of Algorithm 6 (refer to Theorem 4). For the

rest of this thesis, we denote by Pt(p, q) the path from p to q with spanning ratio t,

found by the FindPath algorithm, and, we denote by P6(p, q) the path from p to q

found by Algorithm 6.

The following lemma is used to prove the correctness of Algorithm 6 and to es-

tablish an upper bound on the routing ratio of Algorithm 6 (refer to Theorem 5).

Lemma 11. Algorithm 6 finds a path in an RSW-Spanner from p to the representative

a of Bpq(p) by repeatedly applying the Enlarging step (Lines 4 to 9 of Algorithm 6).

Proof. Let v be the current point. If v has an edge leading to the representative a of

Bpq(p), then Line 5 of the Enlarging step of Algorithm 6 choose the edge [v, a].

Otherwise, we prove that each edge [v, w] taken in Line 9 of the Enlarging step of

Algorithm 6 leads to the representative of a bounding box Bw that contains p and is

larger than Bv but not larger than Bpq(p). Thus, Algorithm 6 finds a path from p to

the representative of Bpq(p). Recall that in Algorithm 6, we define

V = {v′ ∈ N (v) | p ∈ Bv′ , v
′ is not the representative of Bv′q(v

′)}.

Suppose that the current point v is inside but is not the representative of Bpq(p).

From Lemma 8, we get that v has an edge to the representative of a point of Pt(p, q)

31

that has a bounding box larger than Bv. This proves that there is always a choice of

edges in the Enlarging step such that Bw contains p and is larger than Bv but not

larger than Bpq(p). Since any point w inside but not representative of Bpq(p) cannot

be the representative of Bwq(w), V is non-empty.

Now, we prove that the next edge [v, w] is chosen such that w is inside Bpq(p).

We prove this by contradiction. Suppose Algorithm 6 takes the edge [v, w] where w

is outside of Bpq(p). Therefore, w must be the representatives of Bpq(p) or must be

in V . Since w is outside of Bpq(p), it cannot be the representative of Bpq(p). Thus, it

must be in V . Since p is in Bw and w is outside of Bpq(p), we have that Bw is larger

than Bpq(p). Since the representative of Bpq(p) has an edge to the representative of

a bounding box containing q, from Lemma 6, we also get that w has an edge to the

representative of a bounding box containing q which contradicts the definition of V .
Because v = p is inside Bpq(p) in the first call of Algorithm 6, we then get that

each edge [v, w] taken in the Enlarging step of Algorithm 6 leads to the representative

of a bounding box Bw that is larger than Bv but not larger than Bpq(p).

Once the representative a of Bpq(p) is found, then Algorithm 6 follows the edge

to the representative b of Bpq(q).

Lemma 12. Algorithm 6 finds a path in an RSW-Spanner from the representative b

of Bpq(q) to q by repeatedly applying the Reducing step (Lines 1 to 2 of Algorithm 6).

Moreover, the path taken from b to q is the same as the path found by the algorithm

FindPath.

Proof. By Lemma 4, b is the representative of Bbq(b). Let x be the representative

of Bbq(q). Thus, the Reducing step takes the edge [b, x]. Furthermore, since b is the

representative of Bbq(b), the algorithm FindPath also takes the edge [b, x]. Then,

both algorithms repeat this step until q is found.

The following theorem follows from Lemmas 11 and 12.

Theorem 4. Algorithm 6 finds a path in an RSW-Spanner from p to q.

3.3.3 Routing Ratio

In this section, we find an upper bound on the routing ratio of Algorithm 6.

32

Lemma 13. Algorithm 6 finds a path in an RSW-Spanner from the representative b

of Bpq(q) to q by repeatedly applying the Reducing step. The sum of the lengths of the

chosen edges is at most 2
s−2 |pq|.

Proof. By Lemma 12, the Reducing step of Algorithm 6 follows exactly what the

recursive algorithm FindPath does. In the proof of Theorem 2, we show that the

length of the path between b and q is at most 2
s−2 |pq|. Therefore, the length of the

path between b and q in the Reducing step is at most 2
s−2 |pq|.

Lemma 14. Algorithm 6 finds a path in an RSW-Spanner from p to the representative

a of Bpq(p) by repeatedly applying the Enlarging step. The sum of the lengths of the

chosen edges is at most 4
s−2 |pq|.

Proof. Consider the edges of P6(p, q) as directed from p to q. Thus, if [u, v] is an edge

in P6(p, q), then u precedes v in P6(p, q). We say that u is the source of the edge and

that v is the target of the edge.

Let cde be a subpath of Pt(p, q) such that c, d ∈ Bpq(p) and the edge [c, d] is at

the i-th level of recursion of the call to FindPathRec(p, a, A) in FindPath(p, q),

i.e. |cd| ≤ (2/s)i|pq|. Consider the set Ti of edges [v, w] such that [v, w] is an edge

of P6(p, q) and the target w is in Bde(d) but not in Bcd(c). We claim that there can

be at most 2 such edges and the sum of the lengths of the edges in Ti is at most

2(2/s)i|pq|, i.e. ∑
[v,w]∈Ti

|vw| ≤ 2

(
2

s

)i
|pq|.

If we sum up the lengths of all edges [v, w] from level 1 to a maximum recursion

depth m, we get that the length of the path from p to the representative a of Bpq(p)

is at most

m∑
i=1

∑
[v,w]∈Ti

|vw| ≤
m∑
i=1

2

(
2

s

)i
|pq| ≤

∞∑
i=1

2

(
2

s

)i
|pq| = 4

s− 2
|pq|.

We now prove our claims. If Ti is empty, then the sum is zero. Otherwise, let

an edge [wj−1, wj] of P6(p, q) in Ti. From Lemma 7, we get |wj−1wj| ≤ (2/s)i|pq|
since the edge [wj−1, wj] is in Bde(d). We consider two cases: either (1) wj is the

representative of Bde(d) or (2) it is not.

33

1. Suppose that wj is the representative of Bde(d), i.e. wj = d.

Consider the edge [wj−2, wj−1] which precedes [wj−1, wj] in P6(p, q). We consider

two subcases: either (a) wj−1 is in Bcd(c) or (b) it is not.

(a) Suppose that wj−1 is in Bcd(c).

Therefore, only [wj−1, wj] has its target in Bde(d) and |wj−1wj| ≤
(2/s)i|pq| ≤ 2(2/s)i|pq|. Notice that, in this case, wj−1 is the represen-

tative of Bcd(c) (thus wj−1 = c) because wj−1 = c can only belong to one

pair separating it from wj = d.

(b) Suppose that wj−1 is not in Bcd(c).

Since wj = d, wj−1 must be strictly inside Bde(d). The point wj−2 must be

in Bcd(c) since if it is outside Bcd(c) but inside Bde(d), then by Lemma 8,

there is an edge from wj−2 to d which contradicts the existence of wj−1.

Furthermore, wj−2 is not the representative of Bcd(c) since this would also

contradict the existence of wj−1. Therefore, the sum of the lengths of all

edges having their target in Bde(d) is |wj−2wj−1|+ |wj−1wj| ≤ 2(2/s)i|pq|.

2. Suppose that wj is not the representative of Bde(d).

From Lemma 8, we get that wj−1 must be in Bcd(c) but not the representative

of Bcd(c). Otherwise, this would contradict the existence of wj. Since wj−1 is in

Bcd(c), there is no other edge [wk−1, wk], k < j, of P6(p, q) preceding [wj−1, wj],

where wk is in Bde(d) but not in Bcd(c).

Now, consider the edge [wj, wj+1] which follows [wj−1, wj] in P6(p, q). We con-

sider two subcases: either (a) wj+1 is the representative of Bde(d) or (b) it is

not.

(a) Suppose that wj+1 is the representative of Bde(d).

From Lemma 7, we get |wjwj+1| ≤ (2/s)i|pq|. Therefore, the sum of the

lengths of all edges having their target in Bde(d) is |wj−1wj|+ |wjwj+1| ≤
2(2/s)i|pq|.

(b) Suppose that wj+1 is not the representative of Bde(d).

34

From Lemma 8, we get that wj has an edge to d. Because wj+1 is not

the representative of Bde(d), wj+1 must be outside of Bde(d). Therefore,

only [wj−1, wj] has its target in Bde(d) and not in Bcd(c) and |wj−1wj| ≤
(2/s)i|pq| ≤ 2(2/s)i|pq|.

These cases cover all possibilities of edges in Ti.

Theorem 5. In an RSW-Spanner, the routing ratio of Algorithm 6 is at most 4
s

+
6
s−2 + 1.

Proof. Let p and q be any two points. Let a be the representative of Bpq(p), and let

b be the representative of Bpq(q). Let Ppa be the subpath from p to a of P6(p, q) and

Pbq be the subpath from b to q of P6(p, q). From Lemma 13 and 14, we get:

|Ppa|+ |ab|+ |Pbq| ≤
4

s− 2
|pq|+

(
1 +

4

s

)
|pq|+ 2

s− 2
|pq| =

(
4

s
+

6

s− 2
+ 1

)
|pq|.

3.4 Improvement – 1-Local Routing Algorithm

An important aspect of routing algorithms is how much information each point needs

to store. In this section, we present an algorithm that is slightly different from

Algorithm 6. The main difference is that it is 1-local instead of 2-local. Let v be the

current point of the routing path. For all neighbors d of v, and for all neighbors e of

d, in the previous section, we supposed that the following information was available

at v:

• the edge [v, d] together with Bvd(v) and Bvd(d);

• the edge [d, e] together with Bde(d) and Bde(e).

In this section, we explain how to design a routing algorithm that does not need to

know the edge [d, e] and the bounding boxes Bde(d) and Bde(e). However, it requires

some other information about d. Recall that Bv is the largest bounding box that v is

the representative of. Let Bd be the smallest bounding box that d is the representative

35

c = wj−1

d = wj

Bwj

Bde(d)

Bwj−1

Bcd(c)

p

Pt(p, q)

P6(p, q)

(a) An illustration of the case 1a

wj−2

wj−1

c

d = wj
Bwj−1

Bde(d)

Bwj−2

Bcd(c)

p

Pt(p, q)

P6(p, q)

(b) An illustration of the case 1b (and 2a)

wj−1

wj

c

d
Bwj

Bde(d)

Bwj−1

Bcd(c)

p

wj+1

P6(p, q)

Pt(p, q)

(c) An illustration of the case 2b)

Figure 11: Illustration of the cases of Lemma 14.

36

v

d1

d2

q

(a) The WSPD of the point set {v, d1, d2, q}.

v

d1

d2

q

(b) The bounding boxes of the split tree of the point set {v, d1, d2, q} (except the
one of the root of the split tree).

Figure 12: Illustration of a point set {v, d1, d2, q} where v is the current point, Bd1
is not defined, and Bd2 is defined.

of and that contains Bv. Notice that d might not be the representative of a bounding

box contains Bv. Thus, Bd might not be defined for some d. See Figure 12 for an

illustration. Then, the following information is now available at v:

• the edge [v, d] together with Bvd(v) and Bvd(d);

• the neighbor d of v together with the bounding box Bd if any.

As a result, this increases the upper bound on the routing ratio by 8
s2

+ 2
s−2 (refer

to Lemma 7). In our modified algorithm, only the Enlarging step differs from Algo-

rithm 6 since the Reducing step in Algorithm 6 is already 1-local. This new algorithm

does not necessarily find the representative a of Bpq(p), but it finds a point a′ that

is the representative a bounding box Ba′q(a
′). To find a path from p to some a′, we

use the following modified strategy. Let v be the current point on the path from p

to a point a′ that is the representative of a box Ba′q(a
′) produced by our algorithm

(at the beginning v = p). Our new algorithm selects the next edge in the follow-

ing way. The distance between a circle C and a point c is defined by the smallest

37

distance between the boundary of C and the point c, and is denoted by |Cc|. Let

V = {v′ ∈ N (v) | Bv′ is defined, |Cv′q| ≥ sρv′}, where ρv′ is the radius of the enclosing
circle Cv′ of Bv′ , and s is the separation ratio of the WSPD. Then, the next edge cho-

sen by our algorithm is the edge [v, w] such that the size of Bw is maximized among

all w ∈ V .
The strategy to find a path from b to q stays the same. Algorithm 7 below outlines

the modified algorithm.

Algorithm 7 FindPathOneLocal(v, p, q)

Input: the current point v,
the source p,
the destination q.

Output: The next point w on the path.
1: if there is an edge [v, v′] where v′ is the representative of Bvq(q) then // Reducing

step
2: w ← v′

3: else// Enlarging step
4: ∀v′ ∈ N (v), let Bv′ be the smallest bounding box that v′ is the representative

of and that contains Bv, if any.
5: Let V = {v′ ∈ N (v) | Bv′ is defined, |Cv′q| ≥ sρv′}
6: w ← argmaxv′∈V sizeof(Bv′)
7: end if
8: return w

Lemma 15. In Algorithm 7, the amount of information stored at each point vi is equal

to O(s2d(vi)B), where B is the maximum number of bits to store a bounding box, and

d(vi) is the number of neighbors of vi. Moreover,
∑n

i=1O(s2d(vi)B) = O(s2nB).

Proof. Callahan and Kosaraju [14] proved that the number of pairs in a WSPD com-

puted by the algorithm ComputeWSPD is O(s2n). Each point in Algorithm 7

knows its neighbors and constant-size information about them. Since each set in a

pair has only one representative, and the number of pairs is O(s2n), the total size of

the local information stored in all vertices is O(s2nB)

Notice that this new algorithm does not guarantee that the path stays inside

Bpq(p). However, as shown in the proof of Lemma 11, the endpoint of the first edge

of the path from p to q that goes outside of Bpq(p) has an edge to the representative

38

of a bounding box containing q. Thus, Algorithm 7 is entering the Reducing step

right after this edge is taken. We prove the correctness (refer to Theorem 6) and an

upper bound on the routing ratio (refer to Theorem 7) of Algorithm 7.

Theorem 6. Algorithm 7 finds a path in an RSW-Spanner from p to q. Moreover,

let u be the current point the first time that the Reducing step is applied. The path

taken from u to q is the same as the path found by the algorithm FindPath(u, q).

Proof. We prove that of each edge [v, w] taken in the Enlarging step of Algorithm 7

leads to the representative of a bounding box Bw that contains p and is larger than

Bv. Furthermore, we prove that the source v of the edge [v, w] is always inside Bpq(p)

in the Enlarging step. Then, we prove that Algorithm 7 enters the Reducing step

which finds q. Thus, Algorithm 7 finds a path from p to q.

Recall that in Algorithm 7, we define Bv′ as the smallest bounding box that v′ is

the representative of and that contains Bv, and

V = {v′ ∈ N (v) | Bv′ is defined, |Cv′q| ≥ sρv′}.

Suppose that the current point v is inside but not the representative of Bpq(p). From

Lemma 8, we get that v has an edge to the representative of a point of Pt(p, q) that

has a bounding box inside larger than Bv. This proves that there is always a choice

of edges in the Enlarging step such that Bv′ is defined and |Cv′q| ≥ sρv′ . Therefore,

when v is inside Bpq(p), V is non-empty.

Let P7(p, q) be the path found by Algorithm 7 between two points p and q. Let

[r, u] be the first edge of the path P7(p, q) such that either:

• u is the representative of Bpq(p); or

• r is inside but not the representative of Bpq(p) and u is outside of Bpq(p).

If u is the representative of Bpq(p), then u has an edge to the representative of a

bounding box containing q. Otherwise, since Bpq(p) ⊂ Bu, by Lemma 6, u still has

an edge to the representative of a bounding box containing q.

Let {U,Q} be the pair separating u from q in the WSPD. Consider a call to

FindPath(u, q). This call performs two call to FindPathRec: FindPathRec(u,

39

u, U) and FindPathRec(x, q, Q). The call to FindPathRec(u, u, U) terminates

immediately. We show that the path taken from x to q in Algorithm 7 is the same

as the path found by the call to FindPathRec(x, q, Q). By Lemma 4, since x

is the representative of Buq(q), x is also the representative of Bxq(x). Let y be the

representative of Bxq(q). Thus, the Reducing step takes the edge [x, y]. Furthermore,

since x is the representative of Bxq(x), the call to FindPathRec(x, q, Q) also takes

the edge [x, y]. Then, both algorithms repeat this step until q is found. Thus, the

path taken from x to q is the same as the path found by the call to FindPathRec(x,

q, Q).

Lemma 16. Consider any RSW-Spanner. In Algorithm 7, the diameter of the last

enclosing circle in the Enlarging step is at most (2/s)|pq|.

Proof. Let Cw be the last enclosing circle in the Enlarging step, and ρw be the radius

of Cw. Since p is in Cw, and |Cwq| ≥ sρw, we also know that |pq| ≥ sρw. Thus, we

get ρw ≤ |pq|
s
, from which 2ρw ≤ 2

s
|pq|.

Theorem 7. In an RSW-Spanner, the routing ratio of Algorithm 7 is at most 8
s2

+
4
s

+ 8
s−2 + 1.

Proof. Let P7(p, q) be the path found by Algorithm 7 between two points p and q.

Let [r, u] be the first edge of the path P7(p, q) such that either:

• u is the representative of Bpq(p); or

• r is inside but not the representative of Bpq(p) and u is outside of Bpq(p).

If u is the representative of Bpq(p), then u has an edge to the representative of a

bounding box containing q. Otherwise, since Bpq(p) ⊂ Bu, by Lemma 6, u still has

an edge to the representative of a bounding box containing q. By Lemma 16, since

[r, u] is in Bu, we get that |ru| ≤ (2/s)|pq|.
Let cde be a subpath of Pt(p, q) such that c, d ∈ Bpq(p) and the edge [c, d] is at

the i-th level of recursion of the call to FindPathRec(p, a, A) in FindPath(p, q).

Let Ti be the set of edges [v, w] such that [v, w] is an edge of P7(p, q) and the target w

is in Bde(d) but not in Bcd(c). We prove that, for i ≥ 1, Ti contains at most 2 edges

40

and the sum of the lengths of the edges in Ti is at most 2(2/s)i|pq|, i.e.

∑
[v,w]∈Ti

|vw| ≤ 2

(
2

s

)i
|pq|.

If Ti is empty, then the sum is zero. Otherwise, let an edge [wj−1, wj] of P7(p, q) be

in Ti. From Lemma 7, we get |wj−1wj| ≤ (2/s)i|pq| since the edge [wj−1, wj] is in

Bde(d). We consider two cases: either (1) wj is the representative of Bde(d) or (2) it

is not.

(1) Suppose that wj is the representative of Bde(d), i.e. wj = d.

Consider the edge [wj−2, wj−1] which precedes [wj−1, wj] in P7(p, q) . We consider

two subcases: either (a) wj−1 is in Bcd(c) or (b) it is not.

(a) Suppose that wj−1 is in Bcd(c).

Therefore, only [wj−1, wj] has its target in Bde(d) and |wj−1wj| ≤
(2/s)i|pq| ≤ 2(2/s)i|pq|. Notice that, in this case, wj−1 is the represen-

tative of Bcd(c) (thus wj−1 = c) because wj−1 = c can only belong to one

pair separating it from wj = d.

(b) Suppose that wj−1 is not in Bcd(c).

Since wj = d, wj−1 must be strictly inside Bde(d). The point wj−2 must be

in Bcd(c) since if it is outside Bcd(c) but inside Bde(d), then by Lemma 8,

there is an edge from wj−2 to d which contradicts the existence of wj−1.

Furthermore, wj−2 is not the representative of Bcd(c) since this would also

contradict the existence of wj−1. Therefore, the sum of the lengths of all

edges having their target in Bde(d) is |wj−2wj−1|+ |wj−1wj| ≤ 2(2/s)i|pq|.

(2) Suppose that wj is not the representative of Bde(d).

From Lemma 8, we get that wj−1 must be in Bcd(c) but not the representative

of Bcd(c). Otherwise, this would contradict the existence of wj. Since wj−1 is in

Bcd(c), there is no other edge [wk−1, wk], k < j, of P6(p, q) preceding [wj−1, wj],

where wk is in Bde(d) but not in Bcd(c).

41

Now, consider the edge [wj, wj+1] which follows [wj−1, wj] in P7(p, q). We consider

two subcases: either (a) wj+1 is the representative of Bde(d) or (b) it is not.

(a) Suppose that wj+1 is the representative of Bde(d).

From Lemma 7, we get |wjwj+1| ≤ (2/s)i|pq|. Therefore, the sum of the

lengths of all edges having their target in Bde(d) is |wj−1wj| + |wjwj+1| ≤
2(2/s)i|pq|.

(b) Suppose that wj+1 is not the representative of Bde(d).

From Lemma 8, we get that wj has an edge to d. Because wj+1 is not

the representative of Bde(d), wj+1 must be outside of Bde(d). Therefore,

only [wj−1, wj] has its target in Bde(d) and not in Bcd(c) and |wj−1wj| ≤
(2/s)i|pq| ≤ 2(2/s)i|pq|.

These cases cover all possibilities of edges in Ti.

Consider the set T1. Notice that T1 is the set of edges [v, w] such that [v, w] is

an edge of P7(p, q) and the target w is in Bpq(p) but not in Bpa(p), where a is the

representative of Bpq(p). Let T = {[r, u]} ∪ T1. We prove that T contains at most 2

edges and the sum of the lengths of the edges in T is at most 2(2/s)|pq|. Recall that
[r, u] is the first edge of the path P7(p, q) such that u is the representative of Bpq(p),

or r is in Bpq(p) but not the representative of Bpq(p) and u is outside of Bpq(p). We

have two cases: (1) u is the representative of Bpq(p); (2) r is in Bpq(p) but not the

representative of Bpq(p) and u is outside of Bpq(p).

(1) Suppose that u is the representative of Bpq(p).

Then, the edge [r, u] is in T1, and T = T1. Thus,

∑
[v,w]∈T

|vw| =
∑

[v,w]∈T1

|vw| ≤ 2(2/s)|pq|.

(2) Suppose that r is in Bpq(p) but not the representative of Bpq(p) and u is outside

of Bpq(p).

If r is in Bpa(p), then T1 is empty and T only contains the edge [r, u] of length

at most (2/s)|pq|. Otherwise, consider the point r′ preceding r in P7(p, q). By

42

Lemma 8, if r′ was in Bpq(p) but not in Bpa(p), then r′ would have an edge

to a which would contradict the existence of r. Thus, r′ must be in Bpa(p).

Therefore, the edge [r′, r] is the only edge in T1, and the length of [r′, r] is at

most (2/s)|pq| by Lemma 1 since [r′, r] is in Bpq(p). Then, T = {[r′, r], [r, u]} and
|r′r|+ |ru| ≤ 2(2/s)|pq|.

If we sum up the lengths of all edges [v, w] from level 2 to a maximum depth m,

and the lengths of the edges in T , we get that the length of the path found in the

Enlarging step is at most

∑
[v,w]∈T

|vw|+
m∑
i=2

∑
[v,w]∈Ti

|vw|

≤

2

(
2

s

)
|pq|+

m∑
i=2

∑
[v,w]∈Ti

|vw|

≤

2

(
2

s

)
|pq|+

m∑
i=2

2

(
2

s

)i
|pq|

=
m∑
i=1

2

(
2

s

)i
|pq|

≤
∞∑
i=1

2

(
2

s

)i
|pq|

=

4

s− 2
|pq|

Since u has an edge to a bounding box containing q, Algorithm 7 enters the

Reducing step. We bound the path found by Algorithm 7 by comparing its length

to the distance |uq|. By Theorem 6, we know that the path taken from u to q is the

same as the path found by the algorithm FindPath(u, q). Let {U,Q} be the pair

separating u from q in the WSPD. Consider the call to FindPath(u, q). This call

43

performs two call to FindPathRec: FindPathRec(u, u, U) and FindPathRec(x,

q, Q). The call to FindPathRec(u, u, U) terminates immediately. By Lemma 1,

the length of the edge [u, x] is at most (1 + 4/s)|uq|. In the proof of Theorem 2,

we show that the length of the path found by FindPathRec(x, q, Q) is at most

(2/(s− 2))|uq|. Thus, the length of the path found by Algorithm 7 from u to q is at

most |ux|+ (2/(s− 2))|uq| ≤ (1 + 4/s+ 2/(s− 2))|uq|.
Since the diameter of the enclosing circle of Bu is at most (2/s)|pq| from Lemma 16,

and since p is in Bu, we have |up| ≤ (2/s)|pq|. By the triangle inequality, we get that

|uq| ≤ |up| + |pq| ≤ (2/s)|pq| + |pq| = (1 + 2/s)|pq|. Let Ppu be the subpath from p

to u of P7(p, q) and Puq be the subpath from u to q of P7(p, q). We then get that the

length of the path is at most

|Ppu|+ |Puq|

≤
4

s− 2
|pq|+

(
1 +

4

s
+

2

s− 2

)
|uq|

≤
4

s− 2
|pq|+

(
1 +

4

s
+

2

s− 2

)(
1 +

2

s

)
|pq|

=(
8

s2
+

4

s
+

8

s− 2
+ 1

)
|pq|.

Chapter 4

Conclusion

In this chapter, we summarize the results of this thesis and explore directions for

future research.

4.1 Summary of Results

Our main contribution is a competitive local-routing algorithm on a WSPD-spanner

that we called RSW-Spanner, with a near-optimal routing ratio, 1 + O(1/s). Given

a pointset and a separation ratio s, a WSPD with separation ratio s is (typically)

not unique. We based the construction of the WSPD on the split tree data structure.

From this WSPD, we showed how to construct the RSW-Spanner that facilitates local

routing by selecting a well-chosen edge from each partition rather than picking an

arbitrary edge in general WSPD-spanners. As a side benefit, the RSW-Spanner has a

slightly improved spanning ratio, 1+4/s+4/(s−2), over the original one, 1+8/(s−4).

This improvement stems from the additional properties our well-chosen edges have.

On the RSW-Spanner, we presented a 2-local and a 1-local routing algorithm with

competitive routing ratios of 1 + 4/s + 6/(s − 2) and 1 + 4/s + 8/(s − 2) + 8/s2,

respectively. Ideally, one would like the routing ratio to be identical to the spanning

ratio, however, this is rarely the case when routing locally since an adversary can

often force an algorithm to stray from the actual shortest path. We proved a lower

bound of 1 + 8/s on the spanning ratio of the RSW-Spanner, thereby proving the

near-optimality of the spanning ratio of the RSW-Spanner and the near-optimality

of the routing ratio of both our routing algorithms.

44

45

4.2 Future Work

This thesis mostly addressed the problem of local routing in 2-dimensional spanners.

WSPDs can be defined in Rd in general. We think that the results of this thesis

extend to higher dimensions. Also, as said in Section 2.3, there exist WSPD-based

spanners with bounded degree and bounded diameter. Doing local routing in spanners

with bounded degree would be interesting in that it would decrease the size of the

local information at each point. As for spanners with bounded diameter, it would be

interesting to do local routing in those such that the number of edges in the path be

comparable to the diameter.

WSPDs have been used before as an aid to routing in unit-disk graphs by Kaplan

et al. [19]. They showed a local routing algorithm on the unit-disk graph that uses a

WSPD constructed with the unit-disk graph as a metric. Moreover, there are several

versions of WSPD based on the data structure that is used in their construction. For

example, the WSPD we used in this thesis was constructed using split trees. Sariel

Har-Peled [18] showed how to construct WSPDs with quadtrees. We think that the

results of this thesis extend to quadtrees and other similar types of trees. Thus, by

exploring the use of other data structures and other metrics, it would be interesting

to search for spanners in high-dimensions where it is possible to do local routing with

a better routing ratio.

More generally, another well-known family of spanners possible in high-dimensions

are greedy spanners [2,3] derived from Kruskal’s algorithm. They are constructed by

considering each edge in non-decreasing order, checking if there is a path satisfying

the requirements of the t-spanner, and if not, adding the edge to the graph. No local

routing algorithm is known for this type of graph.

List of References

[1] P. K. Agarwal, H. Edelsbrunner, and O. Schwarzkopf. Euclidean minimum span-
ning trees and bichromatic closest pairs. Discrete Comput. Geom., 6:407–422,
1991.

[2] S. P. A. Alewijnse, Q. W. Bouts, A. P. ten Brink, and K. Buchin. Computing
the greedy spanner in linear space. Algorithmica, 73(3):589–606, 2015.

[3] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners
of weighted graphs. Discrete Comput. Geom., 9:81–100, 1993.

[4] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. H. M. Smid. Euclidean
spanners: short, thin, and lanky. In Symp. Theory Comput. (STOC), pages
489–498, 1995.

[5] S. Arya, D. M. Mount, and M. H. M. Smid. Randomized and deterministic
algorithms for geometric spanners of small diameter. In Symp. Found. Comput.
Sci. (FOCS), pages 703–712, 1994.

[6] N. Bonichon, P. Bose, J.-L. De Carufel, L. Perkovic, and A. van Renssen. Upper
and lower bounds for online routing on Delaunay triangulations. In European
Symp. Algorithms (ESA), pages 203–214, 2015.

[7] P. Bose, P. Carmi, S. Collette, and M. H. M. Smid. On the stretch factor of
convex delaunay graphs. JoCG, 1(1):41–56, 2010.

[8] P. Bose, P. Carmi, and S. Durocher. Bounding the locality of distributed routing
algorithms. Distrib. Comput., 26(1):39–58, 2013.

[9] P. Bose, L. Devroye, M. Löffler, J. Snoeyink, and V. Verma. Almost all Delaunay
triangulations have stretch factor greater than pi/2. Comput. Geom., 44(2):121–
127, 2011.

[10] P. Bose, R. Fagerberg, A. van Renssen, and S. Verdonschot. Optimal local
routing on Delaunay triangulations defined by empty equilateral triangles. SIAM
J. Comput., 44(6):1626–1649, 2015.

[11] P. Bose and P. Morin. Online routing in triangulations. SIAM J. Comput.,
33(4):937–951, 2004.

46

47

[12] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph
problems in higher dimensions. In Symp. Discrete Algorithms (SODA), pages
291–300, 1993.

[13] P. B. Callahan and S. R. Kosaraju. Algorithms for dynamic closest pair and
n-body potential fields. In Symp. Discrete Algorithms (SODA), pages 263–272,
1995.

[14] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J.
ACM, 42(1):67–90, 1995.

[15] P. Chew. There is a planar graph almost as good as the complete graph. In
Symp. Comput. Geom. (SOCG), pages 169–177, 1986.

[16] P. Chew. There are planar graphs almost as good as the complete graph. J.
Comput. Syst. Sci., 39(2):205–219, 1989.

[17] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost
as good as complete graphs. Discrete Comput. Geom., 5:399–407, 1990.

[18] S. Har-Peled. Geometric Approximation Algorithms. American Mathematical
Society, Boston, MA, USA, 2011.

[19] H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth. Routing in unit disk graphs.
In Lat. Am. Symp. Theor. Inform. (LATIN), pages 536–548, 2016.

[20] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete
euclidean graph. Discrete Comput. Geom., 7:13–28, 1992.

[21] S. Misra, I. Woungang, and S. C. Misra. Guide to Wireless Sensor Networks.
Springer Publishing Company, Incorporated, 1st edition, 2009.

[22] G. Narasimhan and M. H. M. Smid. Geometric spanner networks. Cambridge
University Press, 2007.

[23] G. Xia. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM
J. Comput., 42(4):1620–1659, 2013.

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	 Introduction
	Motivation
	Problem Statement
	Contribution
	Organization of the Thesis

	 Background
	Definitions
	WSPD-Spanner
	Well-Separated Pair Decomposition

	 Results
	Preliminaries – Construction of the WSPD
	Construction of t-Spanners Using WSPDs
	2-Local Routing Algorithm
	The Algorithm
	Correctness
	Routing Ratio

	Improvement – 1-Local Routing Algorithm

	 Conclusion
	Summary of Results
	Future Work

	List of References

