
Replica Placement on Bounded Treewidth Graphs∗

Anshul Aggarwal1, Venkatesan T. Chakaravarthy2, Neelima Gupta1,
Yogish Sabharwal2, Sachin Sharma1, and Sonika Thakral†1

1 University of Delhi, India., ngupta@cs.du.ac.in, sonika.ta@gmail.com
2 IBM Research, India., {vechakra, ysabharwal}@in.ibm.com

November 8, 2018

Abstract

We consider the replica placement problem: given a graph and a set of clients, place
replicas on a minimum set of nodes to serve all the clients; each client is associated with
a request and maximum distance that it can travel to get served; there is a maximum
limit (capacity) on the amount of request a replica can serve. The problem falls under
the general framework of capacitated set cover. It admits an O(log n)-approximation
and it is NP-hard to approximate within a factor of o(log n). We study the problem in
terms of the treewidth t of the graph and present an O(t)-approximation algorithm.

1 Introduction

We study a form of capacitated set cover problem [5] called replica placement (RP) that finds
applications in settings such as data distribution by internet service providers (ISPs) and
video on demand service delivery (e.g., [6, 8]). In this problem, we are given a graph rep-
resenting a network of servers and a set of clients. The clients are connected to the network
by attaching each client to a specific server. The clients need access to a database. We wish
to serve the clients by placing replicas (copies) of the database on a selected set of servers
and clients. While the selected clients get served by the dedicated replicas (i.e., cached
copies) placed on themselves, we serve the other clients by assigning them to the replicas
on the servers. The assignments must be done taking into account Quality of Service (QoS)
and capacity constraints. The QoS constraint stipulates a maximum distance between each
client and the replica serving it. The clients may have different demands (the volume of
database requests they make) and the capacity constraint specifies the maximum demand
that a replica can handle. The objective is to minimize the number of replicas opened. The
problem can be formally defined as follows.

∗An abridged version of this paper is to appear in the proceedings of WADS’17.
†Corresponding author.

1

ar
X

iv
:1

70
5.

00
14

5v
3

 [
cs

.D
S]

 1
0

Se
p

20
17

Problem Definition (RP)

The input consists of a graph G = (V, E), a set of clients A and a capacity W . Each client
a is attached to a node u ∈ V , denoted att(a). For each client a ∈ A, the input specifies a
request r(a) and a distance dmax(a). For a client a ∈ A and a node u ∈ V , let d(a, u) denote
the length of the shortest path between u and att(a), the node to which a is attached - the
length is measured by the number of edges and we take d(a, u) = 0, if u = att(a). We
say that a client a ∈ A can access a node u ∈ V , if d(a, u) is at most dmax(a). A feasible
solution consists of two parts: (i) it identifies a subset of nodes S ⊆ V where a replica is
placed at each node in S; (ii) for each client a ∈ A, it either opens a dedicated replica at
a itself for serving the client’s request or assigns the request to the replica at some node
u ∈ S accessible to a. The solution must satisfy the constraint that for each node u ∈ S, the
sum of requests assigned to the replica at u does not exceed W . The cost of the solution is
the number of replicas opened, i.e., cardinality of S plus the number of dedicated replicas
opened at the clients. The goal is to compute a solution of minimum cost. In order to
ensure feasibility, without loss of generality, we assume r(a) ≤W , ∀ a ∈ A. �

The RP problem falls under the framework of the capacitated set cover problem, the
generalization of the classical set cover problem wherein each set is associated with a ca-
pacity specifying the number of elements it can cover. The latter problem is known to
have an O(log n)-approximation algorithm [5]. Using the above result, we can derive an
O(log n)-approximation algorithm for the RP problem as well. On the other hand, we can
easily reduce the classical dominating set problem to RP: given a graph representing an
instance of the dominating set problem, we create a new client for each vertex and attach
it to the vertex; then, we set dmax(·) = 1 for all the clients and W =∞. Since it is NP-hard
to approximate the dominating set problem within a factor of o(log n) [7], by the above
reduction, we get the same hardness result for the RP problem as well.

The RP problem is NP-hard even on the highly restricted special case where the graph
is simply a path, as can be seen via the following reduction from the bin packing problem.
Given K bins of capacity W and a set of items of sizes s1, s2, . . . , sn, for each item i, we
create a client a with demand r(a) = si. We then construct a path of nodes of length K and
attach all the clients to one end of the path and take W to be the capacity of the nodes.

Prior Results

Prior work has studied a variant of the RP problem where the network is a directed acyclic
graph (DAG), and a client a can access a node u only if there is a directed path from a
to u of the length at most dmax(a). Under this setting, Benoit et al. [3] considered the
special case of rooted trees and presented a greedy algorithm with an approximation ratio
of O(∆), where ∆ is the maximum degree of the tree. For the same problem, Arora et al.
[2] (overlapping set of authors) devised a constant factor approximation algorithm via LP
rounding.

Progress has been made on generalizing the above result to the case of bounded treewidth
DAGs. Recall that treewidth [4] is a classical parameter used for measuring how close a
given graph is to being a tree (a formal definition is included in Section 2). For a DAG,
the treewidth refers to the treewidth t of the underlying undirected graph. Notice that the
reduction from the bin-packing problem shows that the problem is NP-hard even for trees

2

(i.e., t = 1) and rules out the possibility of designing an exact algorithm running in time
nO(t) (say via dynamic programming) or FPT algorithms with parameter t.

Arora et al. [1] made progress towards handling DAGs of bounded treewidth and
designed an algorithm for the case of bounded-degree, bounded-treewidth graphs. Their
algorithm achieves an approximation ratio of O(∆ + t), where ∆ is the maximum degree
and t is the treewidth of the DAG. Their result also extends for networks comprising of
bounded-degree bounded-treewidth subgraphs connected in a tree like fashion.

Our Result and Discussion

We study the RP problem on undirected graphs of bounded treewidth. Our main result
is an O(t)-approximation algorithm running in time O(nc), where the exponent c is a con-
stant independent of the treewidth t. In contrast to prior work, the approximation ratio
depends only on the treewidth and is independent of other parameters such as the maxi-
mum degree.

Our algorithm is based on rounding solutions to a natural LP formulation, as in the case
of prior work [2, 1]. However, the prior algorithms exploit the acyclic nature of the graphs
and the bounded degree assumption to transform a given LP solution to a solution wherein
each client is assigned to at most two replicas. In other words, they reduce the problem
to a capacitated vertex cover setting, for which constant factor rounding algorithms are
known [11].

The above reduction does not extend to the case of general bounded treewidth graphs.
Our algorithm is based on an entirely different approach. We introduce the notion of “clus-
tered solutions”, wherein the partially open nodes are grouped into clusters and each client
gets served only within a cluster. We show how to transform a given LP solution to a new
solution in which a partially-open node participates in at most (t+ 1) clusters. This allows
us to derive an overall approximation ratio O(t). The notion of clustered solutions may be
applicable in other capacitated set cover settings as well.

Other Related Work

As mentioned earlier, the RP problem falls under the framework of the capacitated set
cover problem (CSC), which admits an O(log n)-approximation algorithm [5]. Two ver-
sions of the CSC problem and its special cases have been considered: soft capacity and
hard capacity settings. Our work falls under the more challenging hard capacity setting,
wherein a set can be picked at most once. The capacitated versions of the vertex cover
problem (e.g., [11]) and dominating set problem (e.g., [9]) have also been studied. Our re-
sult applies to the capacitated dominating problem with uniform capacities and yields an
O(t)-approximation algorithm. The RP problem is also related to the capacitated facility
location framework (e.g., [10]) However, a crucial difference is that RP is concerned only
with whether or not a client can access a facility, and its cost model does not include the
distance between clients and facilities.

3

2 Preliminaries

Here we define the notion of tree decomposition. A tree decomposition of a graph G =
(V,E) is a pair (X = {Xj : j ∈ J}, T = (J,K)), where T is a tree over the nodes J and each
node j ∈ J is associated with a subset of vertices Xj ⊆ V such that the following three
conditions are satisfied: (i) each vertex belongs to at least one bag, i.e.,

⋃
j∈J Xj = V ; (ii)

for every edge (u, v) ∈ E, there is a bag containing both u and v; and (iii) for all vertices
v ∈ V , the set of nodes {j ∈ J : v ∈ Xj} induces a subtree of T . The subsets Xj are called
bags. The width of the tree decomposition is defined to be maxj∈J (|Xj | − 1). The treewidth
t of a graph G is the minimum width over all tree decompositions of G. It is NP-hard to
find the tree decomposition of minimum width, but fixed parameter tractable algorithms
are known.

3 Overview of the Algorithm

Our O(t)-approximation algorithm is based on rounding solution to a natural LP formula-
tion. In this section, we present an outline of the algorithm highlighting its main features,
deferring a detailed description to subsequent sections. We assume that the input includes
a decomposition T of treewidth t of the input network G = (V, E).

LP Formulation

For each node u ∈ V , we introduce a variable y(u) to represent the extent to which a replica
is opened at u and similarly, for each client a ∈ A, we add a variable y(a) to represent the
extent to which a dedicated replica is opened at a itself. For each client a ∈ A and each
node u ∈ V accessible to a, we use a variable x(a, u) to represent the extent to which a is
assigned to u. For a client a ∈ A and a node u ∈ V , we use the shorthand “a ∼ u” to mean
that a can access u.

min
∑
a∈A

y(a) +
∑
u∈V

y(u)

y(a) +
∑

u∈V : a∼u
x(a, u) ≥ 1 for all a ∈ A (1)∑

a∈A : a∼u
x(a, u) · r(a) ≤ y(u) ·W for all u ∈ V (2)

x(a, u) ≤ y(u) for all a ∈ A and u ∈ V with a ∼ u (3)
0 ≤ y(u), y(a) ≤ 1 for all u ∈ V and a ∈ A (4)

Constraint (3) stipulates that a client a cannot be serviced at a node u for an amount ex-
ceeding the extent to which u is open. For an LP solution σ = 〈x, y〉, let cost(σ) denote the
objective value of σ.

The following simple notations will be useful in our discussion. With respect to an LP
solution σ, we classify the nodes into three categories based on the extent to which they
are open. A node u is said to be fully-open, if y(u) = 1; partially-open, if 0 < y(u) < 1;
and fully-closed, if y(u) = 0. A client a is said to be assigned to a node u, if x(a, u) > 0.

4

For a set of nodes U , let y(U) denote the extent to which the vertices in U are open, i.e.,
y(U) =

∑
u∈U y(u).

Outline

The major part of the rounding procedure involves transforming a given LP solution σin =
〈xin, yin〉 into an integrally open solution: wherein which each node u ∈ V is either fully open
or closed. Such a solution differs from an integral solution as a client may be assigned to
multiple nodes (possibly to its own dedicated replica as well). We address the issue easily
via a cycle cancellation procedure to get an integral solution.

The procedure for obtaining an integrally open solution works in two stages. First it
transforms the input solution into a “clustered” solution, which is then transformed into an
integrally open solution. The notion of clustered solution lies at the heart of the rounding
algorithm. Intuitively, in a clustered solution, the set of partially open (and closed) nodes
are partitioned into a collection of clusters C and the clients can be partitioned into a set of
corresponding groups satisfying three useful properties, as discussed below.

Let σ = 〈x, y〉 be an LP solution. It will be convenient to express the three properties
using the notion of linkage: we say that a node u is linked to a node v, if there exists a
client a assigned to both u and v. For constants α and `, the solution σ is said to be (α, `)-
clustered, if the set of partially-open nodes can be partitioned into a collection of clusters,
C = {C1, C2, . . . , Ck} (for some k), such that the the following properties are true:

• Localization: assignments from clients to the partially-open nodes is localized, i.e.,
two partially-open nodes are linked only if they belong to the same cluster.

• Distributivity: assignments from the clients to fully-open nodes are restricted, i.e., for
any Cj , there are at most ` fully-open nodes that are linked to the nodes in Cj .

• Bounded opening: clusters are tiny, i.e., the total extent to which any cluster is open is
at most α, i.e., y(Cj) < α.

Figure 1 provides an illustration. In the first stage of the rounding algorithm, we transform
the input solution σin into an (α, t + 1)-clustered solution with the additional guarantee
that the number of clusters is at most a constant factor of cost(σin), where α ∈ [0, 1/2] is a
tunable parameter. The lemma below specifies the transformation performed by the first
stage.
Lemma 3.1 Fix any constant α ≤ 1/2. Any LP solution σ can be transformed into a (α, t + 1)-
clustered solution σ′ such that cost(σ′) is at most 2+6(t+1)cost(σ)/α. Furthermore, the number
of clusters is at most 3 + 8 · cost(σ)/α.

At a high level, the lemma is proved by considering the tree decomposition T of the
input graph G = (V, E) and performing a bottom-up traversal that identifies a suitable set
of boundary bags. We use these boundary bags to split the tree into a set of disjoint regions
and create one cluster per region. We then fully open the nodes in the boundary bags and
transfer assignments from the nodes that stay partially-open to these fully-open nodes.
The transfer of assignments is performed in such a manner that clusters get localized and
have distributivity of (t+1). By carefully selecting the boundary bags, we shall enforce that

5

Figure 1: Illustration for clustered solution. Three clusters are shown C1, C2 and C3, open
to an extent of 0.4, 0.4 and 0.5; the clusters are linked to the sets of fully-open nodes
{v1, v2, v4}, {v1, v2, v3, v4}, and {v2, v4, v5, v6}. The solution is (0.5, 4)-clustered.

each cluster is open to an extent of only α and that the number of clusters is also bounded.
The proof is discussed in Section 4.

The goal of the second stage is to transform a (1/4, t + 1)-clustered solution (obtained
from Lemma 3.1) into an integrally open solution. At a high level, the localization property
allows us to independently process each cluster C ∈ C and its corresponding group of
clients A. The clients in A are assigned to a set of fully-open nodes, say F . For each node
u ∈ F , we identify a suitable node v ∈ C called the “consort” of u ∈ C and fully open v.
Then the idea is to transfer assignments from the non-consort nodes to the nodes in F and
their consorts in such a manner that at the end, no client is assigned to the non-consort
nodes. This allows us to fully close the non-consort nodes. The localization and bounded
opening properties facilitate the above maneuver. On the other hand, the distributivity
property ensures that F is at most (t + 1). This means that we fully open at most (t +
1) consorts per cluster. Thus, overall increase in cost is at most (t + 1)|C|. Since |C| is
guaranteed to be linear in cost(σin), we get an O(t) approximation factor.
Lemma 3.2 Let σ = 〈x, y〉 be a (1/4, t + 1)-clustered solution via a collection of clusters C. The
solution can be transformed into an integrally open solution σ′ = 〈x′, y′〉 such that cost(σ′) ≤
2 · cost(σ) + 2(t+ 1)|C|.

Once we obtain an integrally open solution, it can easily be transformed to an integral
solution by applying a cycle cancellation strategy, as given by the following lemma.
Lemma 3.3 Any integrally open solution σ = 〈x, y〉 can be transformed to an integral solution
σ′ = 〈x′, y′〉 such that cost(σ′) ≤ 4 · cost(σ).

We can transform any input LP solution σin into an integral solution σout by applying
the above three transformations leading to the following main result of the paper.
Theorem 3.4 The RP problem admits an O(t)-approximation poly-time algorithm.
Proof: We fix α = 1/4 and apply Lemma 3.1 to obtain a solution σ1, which is (1/4, t+ 1)-
clustered via a collection of clusters C. It is guaranteed that cost(σ1) ≤ 2+24(t+1)cost(σin)

6

For each partially-open node v (considered in an arbitrary order)
For each client a that can access both u and v (considered in an arbitrary order)

Compute capacity available at u: cap(u) = W −
∑

b∈A : b∼u x(b, u) · r(b)
If cap(u) = 0 exit the procedure
δ = min

{
x(a, v), cap(u)r(a)

}
Increment x(a, u) by δ and decrement x(a, v) by δ.

Figure 2: Pulling procedure for a given partially-open or closed node u.

and |C| ≤ 3 + 32 · cost(σin). We next apply Lemma 3.2 on the solution σ1 and obtain an
integrally open solution σ2 such that cost(σ2) ≤ 2 · cost(σ1) + 2(t + 1)|C|. Finally, we
transform σ2 into integral solution σout using Lemma 3.3 such that cost(σout) ≤ 4 ·cost(σ2).
It follows that cost(σout) is at most 16 + 24(t + 1) + 448(t + 1)cost(σin). Thus, the overall
approximation ratio is O(t). �

The constant factor involved in the approximation ratio can be improved by more care-
ful book keeping - however, we refrain from doing so, for the ease of exposition. The rest
of the paper is devoted to proving Lemma 3.1, 3.2 and 3.3.

4 Clustered Solution: Proof of Lemma 3.1

The goal is to transform a given solution into an (α, t + 1)-clustered solution with the
properties claimed in the lemma. The idea is to select a set of partially-open or closed
nodes and open them fully, and then transfer assignments from the other partially-open
nodes to them in such a manner that the partially-open nodes get partitioned into clusters
satisfying the three properties of clustered solutions. An issue in executing the above plan
is that the capacity at a newly opened node may be exceeded during the transfer. We
circumvent the issue by first performing a pre-processing step called de-capacitation.

4.1 De-capacitation

Consider an LP solution σ = 〈x, y〉 and let u be a partially-open or closed node. The clients
that can access u might have been assigned to other partially-open nodes under σ. We call
the node u de-capacitated, if even when all the above assignments are transferred to u, the
capacity at u is not exceeded; meaning,∑

a∼u

∑
v: a∼v ∧ v∈PO

x(a, v) < W,

where PO is the set of partially-open nodes under σ (including u). The solution σ is said to
be de-capacitated, if all the partially-open and the closed nodes are de-capacitated.

The preprocessing step transforms the input solution into a de-capacitated solution by
performing a pulling procedure on the partially-open and closed nodes. Given a partially-
open or closed node u, the procedure transfers assignments from other partially-open
nodes to u, as long as the capacity at u is not violated. The procedure is shown in Fig-
ure 2, which we make use of in other components of the algorithm as well.

7

Lemma 4.1 Any LP solution σ = 〈x, y〉 can be transformed into a de-capacitated solution σ′ =
〈x′, y′〉 such that cost(σ′) ≤ 2 · cost(σ).
Proof: We consider the partially-open and closed nodes, and process them in an arbitrary
order, as follows. Let u be a partially-open or closed node. Hypothetically, consider apply-
ing the pulling procedure on u. The procedure may terminate in one of two ways: (i) it exits
mid-way because of reaching the capacity limit; (ii) the process executes in its entirety. In
the former case, we fully open u and perform the pulling procedure on u. In the latter case,
the node u is de-capacitated and so, we leave it as partially-open or closed, without per-
forming the pulling procedure. It is clear that the above method produces a de-capacitated
solution σ′. We next analyze the cost of σ′. Let s be the number of partially-open or closed
nodes converted to be fully-open. Apart from these conversions, the method does not
alter the cost and so, cost(σ′) is at most s + cost(σ). Let the total amount of requests be
rtot =

∑
a∈A r(a). The extra cost s is at most brtot/W c, since any newly opened node is

filled to its capacity. Due to the capacity constraints, the input solution σ must also incur a
cost of at least brtot/W c. It follows that cost(σ′) is at most 2 · cost(σ). �

4.2 Clustering

Given Lemma 4.1, assume that we have a de-capacitated solution σ = 〈x, y〉. We next
discuss how to transform σ into an (α, t+1)-clustered solution. The transformation would
perform a bottom-up traversal of the tree decomposition and identify a set of partially-
open or closed nodes. It would then fully open them and perform the pulling procedure on
these nodes. The advantage is that the above nodes are de-capacitated and so, the pulling
procedure would run to its entirety (without having to exit mid-way because of reaching
capacity limits). As a consequence, the linkage between the nodes gets restricted, leading
to an clustered solution. Below we first describe the transformation and then present an
analysis.

Transformation

Consider the given tree decomposition T . We select an arbitrary bag of T and make it the
root. A bag P is said to be an ancestor of a bag Q, if P lies on the path connecting Q and
the root; in this case, Q is called a descendant of P . We consider P to be both an ancestor
and descendant of itself. A node u may occur in multiple bags; among these bags the one
closest to the root is called the anchor of u and it is denoted anchor(u). A region in T refers
to any set of contiguous bags (i.e., the set of bags induce a connected sub-tree).

In transforming σ into a clustered solution, we shall encounter three types of nodes and
it will be convenient to color them as red, blue and brown. To start with, all the fully-open
nodes are colored red and the remaining nodes (partially-open nodes and closed nodes)
are colored blue. The idea is to carefully select a set of blue nodes, fully-open them and
perform the pulling procedure on these nodes; these nodes are then colored brown. Thus,
while the blue nodes are partially-open or closed, the red and the brown nodes are fully-
open, with the brown and blue nodes being de-capacitated.

The transformation identifies two kinds of nodes to be colored brown, helpers and
boundary nodes. We say that a red node u ∈ V is proper, if it has at least one neighbor

8

Figure 3: Illustration for regions. The figure shows an example tree decomposition. The
bags filled solidly represent already identified boundary bags. All checkered bags belong
to the region headed by P .

v ∈ V which is a blue node. For each such proper red node u, we arbitrarily select one such
blue neighbor v ∈ V and declare it to be the helper of u. Multiple red nodes are allowed
to share the same helper. Once the helpers have been identified, we color them all brown.
The boundary brown nodes are selected via a more involved bottom-up traversal of T that
works by identifying a set B of bags, called the boundary bags. To start with, B is initialized
to be the empty set. We arrange the bags in T in any bottom-up order (i.e., a bag gets listed
only after all its children are listed) and then iteratively process each bag P as per the above
order. Consider a bag P . We define the region headed by P , denoted Region(P), to be the set
of bags Q such that Q is a descendant of P , but not the descendant of any bag already in B.
See Figure 3 for an illustration. A blue node u is said to be active at P , if it occurs in some
bag included in Region(P). Let active(P) denote the set of blue nodes active at P . We
declare P to be a boundary bag and add it to B under three scenarios: (i) P is the root bag.
(ii) P is the anchor of some red node. (iii) the extent to which the nodes in active(P) are
open is at least α, i.e.,

∑
u∈active(P) y(u) ≥ α. If P is identified as a boundary bag, then we

select all the blue nodes appearing in the bag and change their color to be brown. Once the
bottom-up traversal is completed, we have a set of brown nodes (helpers and boundary
nodes). We consider these nodes in any arbitrary order, open them fully, and perform the
pulling procedure on them. We take σ′ to be the solution obtained by the above process.
This completes the construction of σ′. We note that a node may change its color from blue
to brown in the above process, and the new color is to be considered while determining the
active sets thereafter. Notice that during the whole process of the above transformation,
the solution continues to remain de-capacitated. A pseudocode is presented in Figure 4.

Analysis

We now show that σ′ is an (α, t+ 1)-clustered solution. To start with, we have a set of red
nodes that are fully-open and a set of blue nodes that are either partially-open or closed
under σ. The red nodes do not change color during the transformation. On the other
hand, each blue node u becomes active at some boundary bag P . If u occurs in the bag P ,

9

Input: De-capacitated solution σ = 〈x, y〉
Output: (α, t+ 1)-clustered solution σ′ = 〈x′, y′〉

Red← {u : u is fully-open under σ}
Blue← {u : u is partially-open or closed under σ}
Brown← ∅

// Helpers
Set helpers H ← ∅
For each node u ∈ Red

if u has some neighbor belonging to Blue (i.e, a proper red node) then
Let v be any neighbor of u belonging to Blue.
Let H ← H ∪ {v}

Make helpers brown: Blue← Blue−H and Brown← Brown ∪H

// Boundaries: Bottom-up traversal
Set B ← ∅
Arrange the bags in a bottom-up order
For each bag P in the above order

if P is the root, add P to B
if P is the anchor of some node u ∈ Red, then add P to B
Region(P)← {Q : Q is a desc. of P , but not a desc. of any bag in B}
active(P)← {u ∈ Blue : u occurs in some bag Q ∈ Region(P)}
if
(∑

u∈active(P) y(u) ≥ α
)

, add P to B
if P were added to B

For each node u ∈ Blue occuring in P
Delete u from Blue and add to Brown

//Pulling
Arrange the nodes in Brown in an arbitrary order
For each node u in the above order

Fully open u and perform the pulling procedure on u.
Output σ′ as the solution obtained above.

Figure 4: Pseudocode for clustering

10

it changes its color to brown, otherwise it stays blue. Thus, the transformation partitions
the set of originally blue nodes into a set of brown nodes and a set of nodes that stay blue.
In the following discussion, we shall use the term ‘blue’ to refer to the nodes that stay blue.
With respect to the solution σ′, the red and brown nodes are fully-open, whereas the blue
nodes are partially-open or closed.

Recall that with respect to σ′, two nodes u and v are linked, if there is a client a assigned
to both u and v. In order to prove the properties of (α, t+1)-clustering, we need to analyze
the linkage information for the blue nodes. We first show that the blue nodes cannot be
linked to brown nodes, by proving the following stronger observation.
Proposition 4.1 If a client a ∈ A is assigned to a blue node u under σ′, then a cannot access any
brown node v.
Proof: As part of the transformation, we perform the pulling procedure on the brown
node v. Since σ is de-capacitated, the node v is de-capacitated under σ. As a result, the
pulling procedure on v would run to its entirety (without having to exit mid-way because
of reaching the capacity limit). This means that the assignment x(a, u) would get trans-
ferred to v. Thus, under σ′, the client a cannot remain assigned to u, contradicting the
assumption in the lemma statement. �

Proposition 4.1 rules out the possibility of a blue node u being linked to any brown
node. Thus, u may be linked to a red node or another blue node. The following lemmas
establish a crucial property on the connectivity in these two settings.
Lemma 4.2 If two blue nodes u and v are linked under σ′, then there must exist a path connecting
u and v consisting of only blue nodes.
Proof: Let a be any client that is assigned to both u and v. Consider any shortest path
p1 between u and att(a) (the node to which the client a is attached in the network). The
path cannot contain any brown node w, because in this case, d(a,w) would be smaller than
d(a, u), making w accessible to a. This would contradict Proposition 4.1. In a similar vein,
we claim that the path cannot contain any red node. For otherwise, traverse the path from
att(a) to u, and let w be the last red node encountered on the path. Let z be the node
succeeding w (it may be the case that z = u). The node z is blue and is a neighbor of w in
the graph. This means that w is a proper red node and must have a brown helper h. We
have that d(a,w) ≤ d(a, u)− 1 and d(a, h) ≤ d(a,w) + 1, and hence d(a, h) ≤ dmax(a). This
means that a can access h, contradicting Proposition 4.1. We have shown that the path p1
consists of only blue nodes.

The same argument also shows that any shortest path p2 connecting att(a) and v must
also consists of only blue nodes. The path p1 connects u and att(a), and the path p2 con-
nects att(a) and v. By combining the two, we can construct a path p′ connecting u and v.
The path p′ may not be simple, but we can trim it to obtain a simple path p connecting u
and v. The path p contains only blue nodes. �

Lemma 4.3 If a blue node u is linked to a red node v under σ′, then there must exist a path p
connecting u and v such that barring v, the path consists of only blue nodes.
Proof: Let a be a client assigned to both u and v under σ′. Let p1 and p2 be any shortest
paths connecting att(a) with u and v, respectively. As argued in Lemma 4.2, the two paths
cannot contain any brown nodes and furthermore, p1 must contain only blue nodes. This
implies that the node to which a is attached, att(a), must also be a blue node.

11

We claim that the path p2 cannot contain any red nodes, barring v. By contradiction,
suppose such a red node exists. Traverse the path from att(a) to v. The first node on the
path is att(a), a blue node, and continuing further, let w be the first red node encountered.
The node preceding w is a blue node. It follows that w is a proper red node and so, it
must have a brown helper h. Furthermore, d(a,w) ≤ d(a, v)− 1 and d(a, h) ≤ d(a,w) + 1.
Thus, d(a, h) ≤ dmax(a), which implies that a can access the brown node h, contradicting
Proposition 4.1.

We have shown that barring v, the paths p1 and p2 consist of only blue nodes. By
combining the two paths, we can obtain the path p claimed in the lemma. �

The transformation outputs a set of boundary bags B; let B denote the set of non-
boundary bags. If we treat the bags in B as cut-vertices and delete them from T , the tree
splits into a collection R of disjoint regions. Alternatively, these regions can be identified
in the following manner. For each bag P ∈ B and each of its non-boundary child Q ∈ B,
add the region headed by Q (Region(Q)) to the collection R. Let the collection derived be
R = {R1, R2, . . . , Rk}. It is easy to see that R partitions B and that the regions in R are
pairwise disconnected (not connected by edges of the tree decomposition). We next make
two observations regarding connectivity among the regions, with the second one being a
generalization of the first.
Proposition 4.2 Consider any region Rj ∈ R. Let u and v be two nodes such that u occurs only
in the bags of Rj , whereas v does not occur in any bag of Rj . Then, any path p in G connecting u
and v must pass through some boundary bag X , i.e., one of the nodes of p must occur in X .
Proposition 4.3 Consider any region Rj ∈ R. Let Q be the bag heading Rj and let P ∈ B be its
parent bag. Let u and v be two nodes such that u occurs only in the bags of Rj , v does not occur in
P and anchor(v) does not belong to Rj . Then, any path p connecting u and v must include a node
w 6= v such that w occurs in P or anchor(v).

The two propositions can be proved by appealing to the properties of tree decompo-
sitions. The first follows as a direct consequence of these properties. We can prove the
second by arguing two cases: (i) if anchor(v) is a descendant of P , then the path p must
include a node w 6= v occurring in anchor(v); (ii) if anchor(v) is not a descendant of P , the
path must include a node w 6= v occurring in P .

We are now ready to show that σ′ is an (α, t+ 1)-clustered solution. Towards that goal,
let us suitably partition the set of partially open nodes into a collection of clusters C. For
each region Rj , let Cj be the set of partially open nodes that occur in some bag of Rj . We
take C to be the collection {C1, C2, . . . , Ck}.

Let us verify that the collection C constructed above is indeed a partitioning of the set
of partially open nodes. Firstly, we can see that any partially open node u must belong
to some cluster Cj : the node u cannot occur in any boundary bag (for otherwise, u would
have turned brown) and so, it must occur in a non-boundary bag found in some region
Rj and would get included in Cj . Secondly, any partially open node u cannot belong to
two clusters Ci and Cj . For otherwise, u must occur in some bags Q1 ∈ Ri and Q2 ∈ Rj .
Since Ri and Rj are disconnected, the (unique) path connecting Q1 and Q2 in T must pass
through some boundary bag P . By the properties of tree decomposition, the node u must
also occur in P . In this case, u would have turned brown, contradicting the assumption
that u is partially open, and hence blue.

12

We next argue that C satisfies the three properties of localization, distributivity and
bounded opening. However, the number of clusters in the collection may exceed the
bound claimed in Lemma 3.1. Later, we show that the issue can be easily rectified by
suitably merging the clusters.
Lemma 4.4 The solution σ′ is (α, t+ 1)-clustered.
Proof: We prove the collection C satisfies the three properties.

Localization: We need to show that any two linked blue nodes u and v belong to the
same cluster. By contradiction, suppose that there exist two blue nodes u and v belonging
to two different clusters Ci and Cj such that a common client a is assigned to both of them
under σ′. Lemma 4.2 shows that u and v are connected by a path p consisting only of blue
nodes. By the construction of the clusters, u and v occur only in the bags of the regions
Ri and Rj , respectively. Thus, by Proposition 4.2, some node w found in p must occur in
some boundary bag P . However, in this case, the transformation would have turned the
blue node w to a brown node, contradicting the fact that w stayed blue.

Distributivity: Consider any cluster Cj and any node u ∈ Cj . Let Q be the bag heading
the corresponding region Rj and let P be the parent bag of Q. We claim that any red node
v linked to u must occur in P . By contradiction suppose v does not occur in P . By Lemma
4.3, there must exist a path p connecting u and v, which is made of all blue nodes, barring v.
The bag P̂ = anchor(v) cannot belong to the region Rj ; for otherwise, the transformation
would have made P̂ into a boundary bag, but the regionRj consists of only non-boundary
bags. Thus, Proposition 4.3 implies that the path p must include a node w 6= v such that w
occurs in P or anchor(v). Both P and anchor(v) are boundary bags and w is a blue node.
In this case, the transformation would have turned w to a brown node, contradicting the
fact that w stayed blue. The claim implies that all the red nodes that are linked to the blue
nodes inCj occur in the bag P . Since T is a decomposition of width t, P can contain at most
t+ 1 elements. Thus, the blue nodes in Cj can be linked to at most t+ 1 red nodes. In the
solution σ′, the red and brown nodes are fully-open. By Proposition 4.1, the brown nodes
cannot be linked to blue nodes. We have thus proved that the clustering has distributivity
parameter t+ 1.

Bounded opening: We claim that each cluster Cj is open to an extent of less than α, i.e.,
y(Cj) < α. For otherwise, consider the corresponding region Rj and the bag Q heading
Rj . Notice that if y(Cj) ≥ α, the transformation would have made Q itself to a boundary
bag, but any region in the collectionR contains only non-boundary nodes. �

Cost Analysis: Here we analyze the solution σ′ = 〈x′, y′〉 and prove the bound claimed
in Lemma 3.1. Let Red, Blue and Brown denote the set of red, blue and brown nodes. Then,
cost(σ′) is given by |Red| + |Brown| + y′(Blue) + y(A), where y(A) represents the extent
to which dedicated replicas are opened, i.e., y(A) =

∑
a∈A y(a). The red nodes do not

change their color, for any blue node u, the extent to which it is open does not change and
similarly, for any client a, y(a) does not change. Thus, |Red| + y′(Blue) + y′(A) ≤ cost(σ)
and hence, cost(σ′) ≤ cost(σ) + |Brown|. We create a brown helper node for each red node.
Furthermore, for each boundary bag P ∈ B, we convert all the blue nodes in P to be brown,
and the number of such blue nodes is at most (t + 1). Thus, |Brown| ≤ |Red| + (t + 1)|B|.
A bag P is made a boundary bag under one of the three scenarios. (i) P is the root bag;

13

(ii) P is the anchor of some red node; (iii) the total extent to which the nodes in active(P)
are open is at least α. The number of boundary bags of the first two types are 1 + |Red|.
Regarding the third scenario, notice that each originally blue node becomes active at a
unique boundary bag. This is because, each originally blue node becomes active at some
boundary piece P . If it occurs in P , then it turns brown and otherwise, by the properties
of tree decomposition it cannot occur in the region of any other boundary bag. The total
extent to which these originally blue nodes are open is at most cost(σ). Thus, the number
boundary bags of the third type is at most dcost(σ)/αe. Therefore,

|B| ≤ 1 + |Red|+ dcost(σ)/αe ≤ 2 + |Red|+ cost(σ)/α.

It follows that cost(σ′) is at most cost(σ) + |Red|+ (t+ 1)(2 + |Red|+ cost(σ)/α). A simple
arithmetic shows that cost(σ′) is at most 2 + 3(t+ 1)cost(σ)/α (we use the fact that |Red| ≤
cost(σ) and our assumption that the parameter α is at most 1/2). The preprocessing step of
de-capacitation incurs a 2-factor increase in cost. Taking this into account, we get the cost
bound claimed in the statement of Lemma 3.1.

Number of Clusters: As mentioned earlier, an issue with the collection C is that it may
have more clusters than the bound claimed in Lemma 3.1. We reduce the number of
clusters by suitably merging the clusters. Consider each boundary bag P . All the non-
boundary children of P have a corresponding cluster in C and let CP denote the collection
of these clusters. We start with the collection CP and repeatedly perform the following
merging operation. Select any two clusters C and C ′ from CP such that y(C) ≤ α/2 and
y(C ′) ≤ α/2 and merge the two into a single cluster. The process is stopped when we can-
not find two such clusters. This way we get a set of new clusters all of which are open to
an extent of at most α. Furthermore, except for perhaps a single cluster, all the others are
open to an extent of at least α/2; we refer to these as normal clusters and the exceptional one
as abnormal. We perform this processing for all the boundary bags and obtain a new collec-
tion C′. The number of abnormal clusters is at most |B|. The collection C′ is a partitioning
of Blue and each normal cluster is open to an extent of at least α/2. Thus, the number of
normal clusters can be at most dy′(Blue)/(α/2)e, which is at most d2cost(σ)/αe. Hence, the
total number of clusters in C′ is at most 3 + 4cost(σ)/α. The process of merging does not
affect distributivity: as shown in the proof Lemma 4.4, for any two merged clusters, the
partially-open nodes in the clusters can only be linked to the fully-open nodes found in the
parent boundary piece and the count of such fully-open nodes can be at most (t+ 1). The
preprocessing step of de-capacitation increases cost by 2-factor. Taking this into account,
we get the bound on number of clusters claimed in the statement of Lemma 3.1.

5 Integrally Open Solution: Proof of Lemma 3.2

Our goal is to transform a given (1/4, t+ 1)-clustered solution σ = 〈x, y〉 into an integrally
open solution σ′. We classify the clients into two groups, small and large, based on the
extent to which they are served by dedicated replicas: a client a ∈ A said to be small, if
y(a) < 1/2, and it is said to be large otherwise. Let As and Al denote the set of small and
large clients, respectively.

14

Let A be the set of clients assigned to nodes in C
Let F = {u1, u2, . . . , ut+1} be the fully-open nodes linked to nodes in C
Apply Proposition 5.1 to get a solution σ′ = 〈x′, y′〉
For i ≤ t+ 1, let Ai ⊂ A be the set of clients assigned to ui.

/* Selection of consorts */
Let L← ∅
For i to 1 to t+ 1

For each node v ∈ C: let r(Ai, v) =
∑

a∈Ai:a∼v r(a).
Let vi ← argmaxv∈C−Lr(Ai, v) and add vi to L.

Let C ′ ← C − L

/* Push from nodes in F to L
For i from 1 to t+ 1

Let load to push: pushable(ui, vi) =
∑

a∈Ai:a∼vi x(a, ui)r(a)

Let remaining load: rem← pushable(ui, vi)
For each a ∈ Ai such that a ∼ vi (considered in an arbitrary order)

Let amnt← min{rem, x(a, ui)r(a)}
Let δ ← amnt/r(a)
x′(a, vi)← x′(a, vi) + δ and x′(a, ui)← x′(a, ui)− δ
rem← rem− amnt

If rem == 0 exit loop and go to next i.

/* Transfer load from C ′ to F */
For each node v ∈ C ′ and each node ui ∈ F

For each client a ∈ Ai and a ∼ v
x′(a, ui)← x′(a, ui) + x′(a, v) and x′(a, v)← 0

Figure 5: Pseudocode for processing for a Cluster C

15

We pre-process the solution σ by opening a dedicated replica at each large client a and
removing its assignments to the nodes (set y(a) = 1 and set x(a, u) = 0 for all nodes u
accessible to a). We see that the transformation at most doubles the cost and the solution
remains (1/4, t+ 1)-clustered.

Consider the pre-processed solution σ. Let C denote the set of clusters (of the partially-
open nodes) under σ. For each cluster C ∈ C, we shall fully open a selected set of at most
2(t+ 1) nodes and fully close rest of the nodes in it.

We now describe the processing for a cluster C ∈ C. Let A ⊆ As denote the set of
clients assigned to the nodes in C. By the distributivity property, these clients are assigned
to at most (t+ 1) fully-open nodes, denoted F = {u1, u2, . . . , ut+1}. A client a ∈ A may be
assigned to multiple nodes from F . In our procedure, it would be convenient if each client
is assigned to at most one node from F and we obtain such a structure using the following
proposition.

The proposition is proved via a cycle cancellation procedure that transfers assignments
amongst the nodes in F . The procedure can ensure that, except for at most |F | clients,
every other client a ∈ A is assigned to at most one node from F . We open dedicated
replicas at the exceptional clients and this results in an cost increase of at most |F |.
Proposition 5.1 Given a solution σ = 〈x, y〉, a set of fully-open nodes F and a set of clients A,
we can obtain a solution σ′ = 〈x′, y′〉 such that each client a ∈ A is assigned to at most one
node from F . Furthermore, the transformation does not alter the other assignments, i.e., for any
node u ∈ V and any client a ∈ A, if u 6∈ F or a 6∈ A, then x′(a, u) = x(a, u). Moreover,
cost(σ′) ≤ cost(σ) + |F |.
Proof: Construct an edge-weighted bipartite graph with nodes in F on one side and the
clients in A on the other side. For a pair of nodes u ∈ F and a ∈ A, add an edge between
the two, if a is assigned to u under σ. In this case, we imagine that a imposes a load
of x(a, u)r(a) on the node u and represent the above quantity as the weight on the edge.
The plan is to employ a standard cycle-cancellation strategy and make the graph acyclic.
Towards that goal, consider any cycle in the graph. Since the graph is bipartite, the cycle
must be of even length. Partition the edges in the cycles into two groups, odd and even,
by alternating on the cycle. Let e = (a, u) be the edge having the least weight and let
wmin = x(a, u)r(a). Assume without loss of generality that e is an odd edge. The idea
is to decrease the load on all the odd edges by an amount wmin and increase the load
on all the even edges by the same amount. This can be accomplished by adjusting the
assignments as follows. For each edge e′ = (a′, u′), compute δ = wmin/r(a

′). If e′ is an odd
edge, increase x(a′, u′) by an amount δ, and otherwise, decrease x(a′, u′) by an amount δ.
The edge weights are recomputed accordingly. The above process makes the assignment
x(a, u) to be zero and so, we can delete the edge, thereby breaking the cycle. We repeat the
process until the bipartite graph becomes acyclic, i.e., a forest.

Consider the resultant LP solution. The forest provides us information on the nodes
that the clients are assigned to: a client a ∈ A is assigned to a node u ∈ F , if u is a neighbor
of a in the forest. Thus, any client a ∈ A appearing as a leaf (vertex of degree one) is
assigned to only a single node from F . These clients satisfy the property claimed in the
proposition. This leaves us with having to deal with clients having multiple neighbors –
letA′ denote the set of such clients. We handle these clients simply by opening a dedicated
replica at the client node itself. The process produces a solution σ′ wherein each client

16

a ∈ A is assigned to at most one node u ∈ F .
The above process incurs an extra cost of one unit per dedicated replica and so, the total

increase in cost is |A′|. It is not difficult to argue that |A′| ≤ |F |. To prove this, we shall
produce a one-to-one mapping from A′ to F . Consider each tree in the forest and root it
at an arbitrary node from F . Since the graph is bipartite, the nodes from F and the clients
from A appear in alternate levels of the tree. Thus, for any client a ∈ A′, all its children are
from F . For each client a ∈ A′, pick one of its children u ∈ F and map a to u. This is a
one-to-one mapping and so, |A′| ≤ |F |. We have shown that cost(σ′) ≤ cost(σ) + |F |. �

The proposition does not alter the other assignments and so, its output solution is also
(1/4, t + 1)-clustered. Given the proposition and the pre-processing, we can assume that
σ = 〈x, y〉 is (1/4, t+1)-clustered wherein each client a ∈ A is assigned to at most one node
from F and that y(a) < 1/2. For each node ui ∈ F , let Ai ⊆ A denote the set of clients
assigned to the node ui. The proposition guarantees that these sets are disjoint.

For a node v and a client a, let load(a, v) denote the amount of load imposed by a
on v towards the capacity: load(a, v) = x(a, v)r(a). It will be convenient to define the
notion over sets of clients and nodes. For a set of clients B and a set of nodes U , let
load(B,U) denote the load imposed by the clients in B on the nodes U : load(B,U) =∑

a∈B,v∈U :a∼v x(a, v)r(a); when the sets are singletons, we shall omit the curly braces. Sim-
ilarly, for a subset C ′ ⊆ C, let load(C ′) =

∑
v∈C′ load(v).

The intuition behind the remaining transformation is as follows. We shall identify a
suitable set of nodes L = {v1, v2, . . . , vt+1} from C, with vi being called the consort of
ui ∈ C, and fully open all these nodes. Then, we consider the non-consort nodesC ′ = C−L
and for each i ≤ t+1, we transfer the load load(Ai, C

′) to the node ui. As a result, no clients
are assigned to the non-consort nodes any more and so, they can be fully closed. In order
to execute the transfer, for each i ≤ t+1, we create space in ui by pushing a load equivalent
to load(Ai, C

′) from ui to its (fully-opened) consort vi. The amount of load load(Ai, C
′)

involved in the transfer is very small: the bounded opening property ensures that y(C) <
1/4 and thus, load(Ai, C

′) < W/4. The fully-opened consort vi has enough additional
space to receive the load: y(vi) ≤ 1/4 and so, load(A, vi) < W/4, which means that if
we fully open the consort, we get an additional space of (3/4)W . However, an important
issue is that a consort vi may not be accessible to all the clients in Ai. Therefore, we need
to carefully choose the consorts in such a manner that each fully open node ui has enough
load accessible to the consort vi that can be pushed to vi. Towards this purpose, we define
the notion of pushable load. For a node ui ∈ F and a node v ∈ C, let pushable(ui, v) denote
the amount of load on ui that is accessible to v: pushable(ui, v) =

∑
a∈Ai:a∼v x(a, ui)r(a).

We next show how to identify a suitable set of consorts such that the pushable load is more
than the load that we wish to transfer.
Lemma 5.1 We can find a set of nodes L = {v1, v2, . . . , vt+1} such that for all i ≤ t + 1,
pushable(ui, v) ≥ load(Ai, C

′).
Proof: For a set of clients B, let r(B) denote the sum of requests of the clients in B. For
a node v, let r(B, v) denote the sum of requests of the clients in B that can access v, i.e.,
r(B, v) =

∑
a∈B:a∼v r(a).

We identify the required set via a greedy procedure. Initialize L = ∅ and iterate over
the nodes u1, u2, . . . , ut+1. For each node ui, select vi = argmaxv∈C−Lr(Ai, v) and add vi to
L.

17

Let L be the set identified by the above procedure and let C ′ = C−L. Fix any i ≤ t+ 1.
We derive a bound on load(Ai, C

′):

load(Ai, C
′) =

∑
v∈C′

∑
a∈Ai:a∼v

x(a, v)r(a) ≤
∑
v∈C′

y(v)
∑

a∈Ai:a∼v
r(a)

≤
∑
v∈C′

y(v)r(Ai, v) ≤ r(Ai, vi)
∑
v∈C′

y(v) < (1/4)r(Ai, vi)

The second statement follows from the LP constraint (3), whereas the third statement is by
the definition of r(Ai, v). The fourth statement follows from the construction and the last
statement follows from the bounded opening property.

For any client a ∈ Ai, the solution has opened a dedicated replica to an extent of y(a)
and the remaining assignment of 1 − y(a) is going to the nodes. Our construction has
ensured that a is a small client and so y(a) < 1/2. This means that the client a is assigned
to an extent of at least 1/2 to the nodes in the cluster. Furthermore, the only nodes to
which the client is assigned are ui and the nodes in the cluster C. Since y(C) < 1/4, the
total extent to which the client a is assigned to the nodes in C is less than 1/4. This implies
that x(a, ui) ≥ 1/4. Therefore,

pushable(ui, vi) =
∑

a∈Ai:a∼vi

x(a, ui)r(a) ≥ (1/4)
∑

a∈Ai:a∼vi

r(a) = (1/4)r(Ai, vi).

We have proved the lemma. �
We have shown that each node ui has a load of at least load(Ai, C

′) which can be
pushed to its consort vi. As observed earlier load(Ai, C

′) < W/4 and load(Ai, vi) < W/4.
Hence, when we fully open the consort, we get an additional space of (3/4)W , which is
sufficient to receive the load from ui. The pseudo-code for processing a cluster C is shown
in Figure 5.

Given the above discussion, we iteratively consider each cluster Cj ∈ C and perform
the above transformation. This results in (t + 1) consorts from Cj being fully-opened and
all the other nodes in Cj being fully closed. At the end of processing all the clusters, we
get a solution in which each node either fully open or fully close. For each cluster Cj , we
incur an extra cost of at most (t+ 1) while applying Proposition 5.1, and an additional cost
of (t+ 1) for opening the consorts. Thus, the cost increases by at most 2(t+ 1)|C|.

6 Integral Solution: Proof of Lemma 3.3

An integrally open solution falls short from being an integral solution in two aspects: (i) a
client may be assigned to more than one node; (ii) a client may be served partly by a dedi-
cated replica and partly by the network nodes. We address the first issue by appealing to
Proposition 5.1 via taking F to be the set of all fully open nodes and A to be the problem-
atic clients. In the resultant solution each client is assigned to at most one fully open node
and the cost can increase by a factor of at most two. The second issue is addressed by the
following proposition.
Proposition 6.1 Let σ = 〈x, y〉 be an integrally open solution in which each client is assigned to
at most one node. It can be transformed into an integral solution σ′ such that cost(σ′) ≤ 2·cost(σ).

18

Proof: We iteratively consider each full open node u. Let A ⊆ A denote the clients as-
signed to u. Each client a ∈ A is served partly by its own dedicated replica to an extent of
y(a), while the remaining request of 1− y(a) is assigned to u. We wish to obtain a solution
wherein each at most one client is assigned to u. Suppose multiple clients are assigned to
u. Choose any two such clients a and b. Without loss of generality, assume that r(a) ≥ r(b).
Let δ = min{x(a, u), y(b)}. Decrease x(a, u) and y(b) by δ, and increase y(a) and x(b, u)
by δ. The assumption that r(a) ≥ r(b) ensures that the above transfers do not violate the
capacity constraint at the node u. The transfer results in either a or b getting fully served
by a dedicated replica and no longer being assigned to u. By repeating the process, we can
derive a solution wherein at most one client a is assigned to u. We then open a dedicated
replica at the specified node a and remove its assignment to u (set y(a) = 1 and x(a, u) = 0).
The procedure is repeated for all fully open nodes, leading to an integral solution σ′. The
cost increases by at most one unit for each full open node. Thus, cost(σ′) ≤ 2 · cost(σ). �

We convert the input integrally open solution σ in to an integral solution σ′ by applying
the above two steps. Each step incurs a 2-factor increase in cost and thus, cost(σ′) is at most
4 · cost(σ).

References

[1] S. Arora, V. Chakaravarthy, K. Gupta, N. Gupta, and Y. Sabharwal. Replica placement
on directed acyclic graphs. In V. Raman and S. Suresh, editors, Proceedings of the 34th
International Conference on Foundation of Software Technology and Theoretical Computer
Science (FSTTCS), pages 213–225, 2014.

[2] S. Arora, V. Chakaravarthy, N. Gupta, K. Mukherjee, and Y. Sabharwal. Replica place-
ment via capacitated vertex cover. In A. Seth and N. Vishnoi, editors, Proceedings of
the 33rd International Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 263–274, 2013.

[3] A. Benoit, H. Larchevêque, and P. Renaud-Goud. Optimal algorithms and approxi-
mation algorithms for replica placement with distance constraints in tree networks. In
Proceedings of the 26th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 1022–1033, 2012.

[4] H. Bodlaender and A. Koster. Combinatorial optimization on graphs of bounded
treewidth. Computer Journal, 51(3):255–269, 2008.

[5] J. Chuzhoy and J. Naor. Covering problems with hard capacities. SIAM Journal of
Computing, 36(2):498–515, 2006.

[6] I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content. Computer
Networks, 40:205–218, 2002.

[7] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

19

[8] K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of replicas in trees with
read, write, and storage costs. IEEE Transactions on Parallel and Distributed Systems,
12:628–637, 2001.

[9] M. Kao, H. Chen, and D. Lee. Capacitated domination: Problem complexity and
approximation algorithms. Algorithmica, 72(1):1–43, 2015.

[10] R. Levi, D. Shmoys, and C. Swamy. LP-based approximation algorithms for capaci-
tated facility location. Math. Program., 131(1-2):365–379, 2012.

[11] B. Saha and S. Khuller. Set cover revisited: Hypergraph cover with hard capacities. In
A. Czumaj, K. Mehlhorn, A. Pitts, and R. Wattenhofer, editors, Proceedings of the 39th
International Colloquium on Automata, Languages, and Programming (ICALP), volume
7391 of LNCS, pages 762–773. Springer, 2012.

20

	1 Introduction
	2 Preliminaries
	3 Overview of the Algorithm
	4 Clustered Solution: Proof of Lemma ??
	4.1 De-capacitation
	4.2 Clustering

	5 Integrally Open Solution: Proof of Lemma ??
	6 Integral Solution: Proof of Lemma ??

