Skip to main content

Balanced Line Separators of Unit Disk Graphs

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2017)

Abstract

We prove a geometric version of the graph separator theorem for the unit disk intersection graph: for any set of n unit disks in the plane there exists a line \(\ell \) such that \(\ell \) intersects at most \(O(\sqrt{(m+n)\log {n}})\) disks and each of the halfplanes determined by \(\ell \) contains at most 2n/3 unit disks from the set, where m is the number of intersecting pairs of disks. We also show that an axis-parallel line intersecting \(O(\sqrt{m+n})\) disks exists, but each halfplane may contain up to 4n/5 disks. We give an almost tight lower bound (up to sublogarithmic factors) for our approach, and also show that no line-separator of sublinear size in n exists when we look at disks of arbitrary radii, even when \(m=0\). Proofs are constructive and suggest simple algorithms that run in linear time. Experimental evaluation has also been conducted, which shows that for random instances our method outperforms the method by Fox and Pach (whose separator has size \(O(\sqrt{m})\)).

Chiu, van Renssen and Roeloffzen were supported by JST ERATO Grant Number JPMJER1305, Japan. Korman was supported in part by KAKENHI Nos. 12H00855 and 17K12635. Katz was partially supported by grant 1884/16 from the Israel Science Foundation. Okamoto was partially supported by KAKENHI Grant Numbers JP24106005, JP24220003 and JP15K00009, JST CREST Grant Number JPMJCR1402, and Kayamori Foundation for Informational Science Advancement. Smorodinsky’s research was partially supported by Grant 635/16 from the Israel Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Katchalski, M., Pulleyblank, W.R.: Cutting disjoint disks by straight lines. Discrete & Computational Geometry 4, 239–243 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Seymour, P., Thomas, R.: A separator theorem for nonplanar graphs. J. Amer. Math. Soc. 3, 801–808 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Edelsbrunner, H., Guibas, L.J., Pach, J., Pollack, R., Seidel, R., Sharir, M.: Arrangements of curves in the plane—topology, combinatorics and algorithms. Theor. Comput. Sci. 92(2), 319–336 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eppstein, D., Miller, G.L., Teng, S.: A deterministic linear time algorithm for geometric separators and its applications. Fundam. Inform. 22(4), 309–329 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Fox, J., Pach, J.: Separator theorems and TurĂ¡n-type results for planar intersection graphs. Advances in Mathematics 219(3), 1070–1080 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fox-Epstein, E., Mozes, S., Phothilimthana, P.M., Sommer, C.: Short and simple cycle separators in planar graphs. In: Proc. of the 15th Meeting on Algorithm Engineering and Experiments, pp. 26–40. SIAM (2013)

    Google Scholar 

  7. Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of bounded genus. J. Algorithms 5(3), 391–407 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Har-Peled, S., Quanrud, K.: Approximation algorithms for polynomial-expansion and low-density graphs. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 717–728. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48350-3_60

    Chapter  Google Scholar 

  9. Hoffmann, M., Kusters, V., Miltzow, T.: Halving balls in deterministic linear time. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 566–578. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44777-2_47

    Google Scholar 

  10. Holzer, M., Schulz, F., Wagner, D., Prasinos, G., Zaroliagis, C.D.: Engineering planar separator algorithms. ACM Journal of Experimental Algorithmics 14 (2009)

    Google Scholar 

  11. Jadhav, S., Mukhopadhyay, A.: Computing a centerpoint of a finite planar set of points in linear time. Discrete & Computational Geometry 12, 291–312 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36(2), 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Löffler, M., Mulzer, W.: Unions of onions: Preprocessing imprecise points for fast onion decomposition. JoCG 5(1), 1–13 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Matoušek, J.: Near-optimal separators in string graphs. Combinatorics, Probability & Computing 23(1), 135–139 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32(3), 265–279 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miller, G.L., Teng, S., Thurston, W.P., Vavasis, S.A.: Separators for sphere-packings and nearest neighbor graphs. J. ACM 44(1), 1–29 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion II. Algorithmic aspects. Eur. J. Comb. 29(3), 777–791 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Smith, W.D., Wormald, N.C.: Geometric separator theorems & applications. In: Proc. of the 39th Annual Symposium on Foundations of Computer Science, pp. 232–243 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Shiitada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Carmi, P. et al. (2017). Balanced Line Separators of Unit Disk Graphs. In: Ellen, F., Kolokolova, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2017. Lecture Notes in Computer Science(), vol 10389. Springer, Cham. https://doi.org/10.1007/978-3-319-62127-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62127-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62126-5

  • Online ISBN: 978-3-319-62127-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics