Skip to main content

An Improved Algorithm for Diameter-Optimally Augmenting Paths in a Metric Space

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10389))

Included in the following conference series:

  • 1590 Accesses

Abstract

Let P be a path graph of n vertices embedded in a metric space. We consider the problem of adding a new edge to P such that the diameter of the resulting graph is minimized. Previously (in ICALP 2015) the problem was solved in \(O(n\log ^3 n)\) time. In this paper, based on new algorithmic techniques and observations, we present an \(O(n\log n)\) time algorithm.

This research was supported in part by NSF under Grant CCF-1317143.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Gyárfás, A., Ruszinkó, M.: Decreasing the diameter of bounded degree graphs. Journal of Graph Theory 35, 161–172 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000). doi:10.1007/10719839_9

    Chapter  Google Scholar 

  3. Bilò, D., Gualà, L., Proietti, G.: Improved approximability and non-approximability results for graph diameter decreasing problems. Theoretical Computer Science 417, 12–22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carufel, J.L.D., Grimm, C., Maheshwari, A., Smid, M.: Minimizing the continuous diameter when augmenting paths and cycles with shortcuts. In: Proc. of the 15th Scandinavian Workshop on Algorithm Theory (SWAT), pp. 27:1–27:14 (2016)

    Google Scholar 

  5. Carufel, J.L.D., Grimm, C., Schirra, S., Smid, M.: Minimizing the continuous diameter when augmenting a tree with a shortcut. arXiv:1612.01370 (2016)

  6. Demaine, E.D., Zadimoghaddam, M.: Minimizing the diameter of a network using shortcut edges. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 420–431. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13731-0_39

    Chapter  Google Scholar 

  7. Frati, F., Gaspers, S., Gudmundsson, J., Mathieson, L.: Augmenting graphs to minimize the diameter. Algorithmica 72, 995–1010 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frederickson, G., Johnson, D.: Generalized selection and ranking: Sorted matrices. SIAM Journal on Computing 13(1), 14–30 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frederickson, G., Johnson, D.: Finding \(k\)th paths and \(p\)-centers by generating and searching good data structures. Journal of Algorithms 4(1), 61–80 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, Y., Hare, D., Nastos, J.: The parametric complexity of graph diameter augmentation. Discrete Applied Mathematics 161, 1626–1631 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Große, U., Gudmundsson, J., Knauer, C., Smid, M., Stehn, F.: Fast algorithms for diameter-optimally augmenting paths. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 678–688. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_55

    Chapter  Google Scholar 

  12. Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13, 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ishii, T.: Augmenting outerplanar graphs to meet diameter requirements. Journal of Graph Theory 74, 392–416 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, C.L., McCormick, S., Simchi-Levi, D.: On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems. Operations Research Letters 11, 303–308 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. Journal of the ACM 30(4), 852–865 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schoone, A., Bodlaender, H., Leeuwen, J.V.: Diameter increase caused by edge deletion. Journal of Graph Theory 11, 409–427 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, H.: An improved algorithm for diameter-optimally augmenting paths in a metric space. arXiv:1608.04456 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, H. (2017). An Improved Algorithm for Diameter-Optimally Augmenting Paths in a Metric Space. In: Ellen, F., Kolokolova, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2017. Lecture Notes in Computer Science(), vol 10389. Springer, Cham. https://doi.org/10.1007/978-3-319-62127-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62127-2_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62126-5

  • Online ISBN: 978-3-319-62127-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics