
An Improved Algorithm for Diameter-Optimally
Augmenting Paths in a Metric Space
Haitao Wang

Department of Computer Science, Utah State University, Logan, UT 84322, USA.
haitao.wang@usu.edu

Abstract
Let P be a path graph of n vertices embedded in a metric space. We consider the problem of
adding a new edge to P such that the diameter of the resulting graph is minimized. Previously
(in ICALP 2015) the problem was solved in O(n log3 n) time. In this paper, based on new
observations and different algorithmic techniques, we present an O(n logn) time algorithm.

Keywords and phrases diameter, path graphs, augmenting paths, minimizing diameter, metric
space

1 Introduction

Let P be a path graph of n vertices embedded in a metric space. We consider the problem
of adding a new edge to P such that the diameter of the resulting graph is minimized. The
problem is formally defined as follows.

Let G be a graph and each edge has a non-negative length. The length of any path of
G is the total length of all edges of the path. For any two vertices u and v of G, we use
dG(u, v) to denote the length of the shortest path from u to v in G. The diameter of G is
defined as maxu,v∈G dG(u, v).

Let P be a path graph of n vertices v1, v2, . . . , vn and there is an edge e(vi−1, vi) connecting
vi−1 and vi for each 1 ≤ i ≤ n−1. Let V be the vertex set of P . We assume (V, |·|) is a metric
space and |vivj | is the distance of any two vertices vi and vj of V . Specifically, the following
properties hold: (1) the triangle inequality: |vivk|+ |vkvj | ≥ |vivj |; (2) |vivj | = |vjvi| ≥ 0;
(3) |vivj | = 0 if i = j. In particular, for each edge e(vi−1, vi) of P , its length is equal to
|vi−1vi|. We assume that given any two vertices vi and vj of P , the distance |vivj | can be
obtained in O(1) time.

Our goal is to find a new edge e connecting two vertices of P and add e to P , such that
the diameter of the resulting graph P ∪ {e} is minimized.

The problem has been studied before. Große et al. [10] solved the problem in O(n log3 n)
time. In this paper, we present a new algorithm that runs in O(n logn) time. Our algorithm is
based on new observations on the structures of the optimal solution and different algorithmic
techniques. Following the previous work [10], we refer to the problem as the diameter-
optimally augmenting path problem, or DOAP for short.

1.1 Related Work
If the path P is in the Euclidean space Rd for a constant d, then Große et al. [10] also gave
an O(n+ 1/ε3) time algorithm that can find a (1 + ε)-approximation solution for the problem
DOAP, for any ε > 0. If P is in the Euclidean plane R2, De Carulfel et al. [4] gave a linear
time algorithm for adding a new edge to P to minimize the continuous diameter (i.e., the
diameter is defined with respect to all points of P , not only vertices).

The more general problem and many variations have also been studied before, e.g., see
[1, 3, 5, 6, 9, 12, 13, 15] and the references therein. Consider a general graph G in which edges

© Haitao Wang;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

60
8.

04
45

6v
1

 [
cs

.D
S]

 1
6

A
ug

 2
01

6

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Diameter-Optimally Augmenting Paths

have non-negative lengths. For an integer k, the goal of the general problem is to compute a
set F of k new edges and add them to G such that the resulting graph has the minimum
diameter. The problem is NP-hard [15] and some other variants are even W[2]-hard [6, 9].
Approximation results have been given for the general problem and many of its variations,
e.g., see [3, 6, 13]. The upper bounds and lower bounds on the values of the diameters of the
augmented graphs have also been investigated, e.g. see [1, 12].

Since diameter is an important metric of network performance, which measures the
worst-case cost between any two nodes of the network, as discussed in [3, 5], the problem of
augmenting graphs for minimizing the diameter and its variations have many practical ap-
plications, such as in data networks, telephone networks, transportation networks, scheduling
problems, etc.

As an application of our problem DOAP, consider the following scenario in transportation
networks. Suppose there is a highway that connects several cities. In order to reduce the
transportation time, we want to build a new highway connecting two cities such that the
distance between the farthest two cities using both highways is minimized. Clearly, this is a
problem instance of DOAP.

1.2 Our Approaches

To tackle the problem, Große et al. [10] first gave an O(n logn) time algorithm for the
decision version of the problem: Given any value λ, determine whether it is possible to add
a new edge e into P such that the diameter of the resulting graph is at most λ. Then, by
implementing the above decision algorithm in a parallel fashion and applying Megiddo’s
parametric search [14], they solved the original problem DOAP in O(n log3 n) time [10]. For
differentiation, we referred to the original problem DOAP as the optimization problem.

Our improvement over the previous work [10] is twofold.
First, we solve the decision problem in O(n) time. Our algorithm is based on the O(n logn)

time algorithm in the previous work [10]. However, by discovering new observations on the
problem structure and with the help of the range-minima data structure [2, 11], we avoid
certain expensive operations and eventually achieve the O(n) time complexity.

Second, comparing with the decision problem, our algorithm for the optimization problem
is completely different from the previous work [10]. Let λ∗ be the diameter of the resulting
graph in an optimal solution. Instead of using the parametric search, we identify a set S of
candidate values such that λ∗ is in S and then we search λ∗ in S using our algorithm for the
decision problem. However, computational difficulties arise for this approach due to that
the set S is too large (|S| = Ω(n2)) and computing certain values of S is time-consuming
(e.g., for certain values of S, computing each of them takes O(n) time). To circumvent these
difficulties, our algorithm has several steps. In each step, we shrink S significantly such that
λ∗ always remains in S. More importantly, each step will obtain certain formation, based on
which the next step can further reduce S. After several steps, the size of S is reduced to O(n)
and all the remaining values of S can be computed in O(n logn) time. At this point we can
use our decision algorithm to find λ∗ from S in additional O(n logn) time. Equipped with
our linear time algorithm for the decision problem and utilizing several other algorithmic
techniques such as the sorted-matrix searching techniques [7, 8] and range-minima data
structure [2, 11], we eventually solve the optimization problem in O(n logn) time.

The rest of the paper is organized as follows. In Section 2, we introduce some notation
and observations. In Section 3, we present our algorithm for the decision problem. The
optimization problem is solved in Section 4.

H. Wang 3

v1
vi

vj
vn

vk

vl

Figure 1 Illustrating the resulting graph after a new edge e(vi, vj) is added.

2 Preliminaries

In this section, we introduce some notation and observations, some of which are from Große
et al. [10].

For any two vertices vi and vj of P , we use e(vi, vj) to denote the edge connecting vi
and vj in the metric space. Hence, e(vi, vj) is in P if and only if |i− j| = 1. The length of
e(vi, vj) is |vivj |.

For any i and j with 1 ≤ i ≤ j ≤ n, we use G(i, j) to denote the resulting graph by
adding the edge e(vi, vj) into P . If i = j, G(i, j) is essentially P . Let D(i, j) denote the
diameter of G(i, j).

Our goal for the optimization problem DOAP is to find a pair of indices (i, j) with
1 ≤ i ≤ j ≤ n such that D(i, j) is minimized. Let λ∗ = min1≤i≤j≤nD(i, j), i.e., λ∗ is the
diameter in an optimal solution.

Given any value λ, the decision problem is to determine whether λ ≥ λ∗, or in other
words, determine whether there exist a pair (i, j) with 1 ≤ i ≤ j ≤ n such that D(i, j) ≤ λ.
If yes, we say that λ is a feasible value.

Recall that for any graph G, dG(u, v) refers to the length of the shortest path between
two vertices u and v in G.

Consider any pair of indices (i, j) with 1 ≤ i ≤ j ≤ n. We define α(i, j), β(i, j), γ(i, j),
and δ(i, j) as follows (refer to Fig. 1).

I Definition 1. 1. Define α(i, j) to be the largest shortest path length in G(i, j) from v1 to
all vertices vk with k ∈ [i, j], i.e., α(i, j) = maxi≤k≤j dG(i,j)(v1, vk).

2. Define β(i, j) to be the largest shortest path length in G(i, j) from vn to all vertices vk
with k ∈ [i, j], i.e., β(i, j) = maxi≤k≤j dG(i,j)(vk, vn).

3. Define γ(i, j) to be the largest shortest path length in G(i, j) from vk to vl for any k and
l with i ≤ k ≤ l ≤ j, i.e., γ(i, j) = maxi≤k≤l≤j dG(i,j)(vk, vl).

4. Define δ(i, j) to be the shortest path length in G(i, j) from v1 to vn, i.e., δ(i, j) =
dG(i,j)(v1, vn).

It can be verified (also shown in [10]) that the following observation holds.

I Observation 2. ([10]) D(i, j) = max{α(i, j), β(i, j), γ(i, j), δ(i, j)}.

Further, due to the triangle inequality of the metric space, the following monotonicity
properties hold.

I Observation 3. ([10])
1. For any 1 ≤ i ≤ j ≤ n− 1, α(i, j) ≤ α(i, j + 1), β(i, j) ≥ β(i, j + 1), γ(i, j) ≤ γ(i, j + 1),

and δ(i, j) ≥ δ(i, j + 1).
2. For any 1 ≤ i < j ≤ n, α(i, j) ≤ α(i+ 1, j), β(i, j) ≥ β(i+ 1, j), γ(i, j) ≥ γ(i+ 1, j), and

δ(i, j) ≤ δ(i+ 1, j).

4 Diameter-Optimally Augmenting Paths

For any pair (i, j) with 1 ≤ i ≤ j ≤ n, let P (i, j) denote the subpath of P between vi and
vj . Hence, dP (vi, vj) is the length of P (i, j), i.e., dP (vi, vj) =

∑
i≤k≤j−1 |vkvk+1| if i < j

and dP (vi, vj) = 0 if i = j.
In our algorithms, we will need to compute f(i, j) for each f ∈ {α, β, γ, δ}. The next

observation gives an algorithm. The result was also given by Große et al. [10] and we present
the proof here for completeness of this paper.

I Lemma 4. ([10]) With O(n) time preprocessing, given any pair (i, j) with 1 ≤ i ≤ j ≤ n,
we can compute dP (i, j) and δ(i, j) in O(1) time, and compute α(i, j) and β(i, j) in O(logn)
time.

Proof. As preprocessing, we compute the prefix sum array A[1 · · ·n] such that A[k] =∑
1≤l≤k−1 |vlvl+1| for each k ∈ [2, n] and A[1] = 0. This can be done in O(n) time. This

finishes our preprocessing.
Consider any pair (i, j) with 1 ≤ i ≤ j ≤ n. Note that dP (vi, vj) = A[j] − A[i], which

can be computed in constant time.
For δ(i, j), it is easy to see that δ(i, j) = min{dP (1, n), dP (1, i)+ |vivj |+dP (j, n)}. Hence,

δ(i, j) can be computed in constant time.
For α(i, j), if we consider dG(i,j)(v1, vk) as a function of k ∈ [i, j], then dG(i,j)(v1, vk) is a

unimodal function. More specifically, as k changes from i to j, dG(i,j)(v1, vk) first increases
and then decreases. Hence, α(i, j) can be computed in O(logn) time by binary search on
the sequence vi, vi+1, . . . , vj .

Computing β(i, j) can be also done in O(logn) time in a similar way to α(i, j). We omit
the details. J

For computing γ(i, j), although one may be able to do so in O(n) time, it is not clear
to us how to make it in O(logn) time even with O(n logn) time preprocessing. As will be
seen later, this is the major difficulty for solving the problem DOAP efficiently. We refer to
it as the γ-computation difficulty. Our main effort will be to circumvent the difficulty by
providing alternative and efficient solutions.

For any pair (i, j) with 1 ≤ i ≤ j ≤ n, we use C(i, j) to denote the cycle P (i, j)∪ e(vi, vj).
Consider dG(i,j)(vk, vl) for any k and l with i ≤ k ≤ l ≤ j. Notice that the shortest
path from vk to vl in C(i, j) is also a shortest path in G(i, j). Hence, dG(i,j)(vk, vl) =
dC(i,j)(vk, vl). There are two paths in C(i, j) from vk to vl: one is P (k, l) and the other
uses the edge e(vi, vj). We use d1

C(i,j)(vk, vl) to denote the length of the above second
path, i.e., d1

C(i,j)(vk, vl) = dP (vi, vk) + |vivj | + dP (vl, vj). With these notation, we have
dC(i,j)(vk, vl) = min{dP (vk, vl), d1

C(i,j)(vk, vl)}. According to the definition of γ(i, j), we
summarize our discussion in the following observation.

I Observation 5. For any pair (i, j) with 1 ≤ i ≤ j ≤ n, γ(i, j) = maxi≤k≤l≤j dC(i,j)(vk, vl),
with dC(i,j)(vk, vl) = min{dP (vk, vl), d1

C(i,j)(vk, vl)} and d1
C(i,j)(vk, vl) = dP (vi, vk) + |vivj |+

dP (vl, vj).

In the following, to simplify the notation, when the context is clear, we use index i to
refer to vertex vi. For example, dP (i, j) refers to dP (vi, vj) and e(i, j) refers to e(vi, vj).

3 The Decision Problem

In this section, we present our O(n) time algorithm for solving the decision problem. For any
value λ, our goal is to determine whether λ is feasible, i.e. whether λ ≥ λ∗, or equivalently,

H. Wang 5

λ

α

γ

β
δ

Ii(α) Ii(γ)Ii(β)Ii(δ)

Figure 2 Illustrating f(i, j) as j changes in [i, n] and Ii(f) for f ∈ {α, β, γ, δ}.

whether there is a pair (i, j) with 1 ≤ i ≤ j ≤ n such that D(i, j) ≤ λ. If yes, our algorithm
can also find such a feasible edge e(i, j).

By Observation 2, D(i, j) ≤ λ holds if and only if f(i, j) ≤ λ for each f ∈ {α, β, γ, δ}.
To determine whether λ is feasible, our algorithm will determine for each i ∈ [1, n], whether
there exists j ∈ [i, n] such that f(i, j) ≤ λ for each f ∈ {α, β, γ, δ}.

For any fixed i ∈ [1, n], we consider α(i, j), β(i, j), γ(i, j), and δ(i, j) as functions of
j ∈ [i, n]. In light of Observation 3, α(i, j) and γ(i, j) are monotonically increasing and β(i, j)
and δ(i, j) are monotonically decreasing (e.g., see Fig. 2). We define four indices Ii(f) for
f ∈ {α, β, γ, δ} as follows. Refer to Fig. 2.

I Definition 6. Define Ii(α) to be the largest index j ∈ [i, n] such that α(i, j) ≤ λ. We
define Ii(γ) similarly to Ii(α). If β(i, n) ≤ λ, then define Ii(β) to be the smallest index
j ∈ [i, n] such that β(i, j) ≤ λ; otherwise, let Ii(β) =∞. We define Ii(δ) similarly to Ii(β).

As discussed in [10], λ is feasible if and only if [1, Ii(α)]∩[Ii(β), n]∩[1, Ii(γ)]∩[Ii(δ), n] 6= ∅
for some i ∈ [1, n]. By Observation 3, we have the following lemma.

I Lemma 7. For any i ∈ [1, n− 1], Ii(α) ≥ Ii+1(α), Ii(β) ≥ Ii+1(β), Ii(γ) ≤ Ii+1(γ), and
Ii(δ) ≤ Ii+1(δ) (e.g., see Fig. 3).

Proof. According to Observation 3, α(i, j) ≤ α(i+ 1, j). This implies that Ii(α) ≥ Ii+1(α)
by the their definitions (e.g., see Fig. 3). The other three cases for β, γ, and δ are similar. J

λ

Ii(α)

α(i+ 1, j)

α(i, j)

β(i, j)

β(i+ 1, j)

Ii+1(α)Ii+1(β) Ii(β)

λ

Ii+1(γ)

γ(i, j)

γ(i+ 1, j)

δ(i+ 1, j)

δ(i, j)

Ii(γ)Ii(δ) Ii+1(δ)

Figure 3 Illustrating f(i, j) and f(i+ 1, j) as j changes and Ii(f) and Ii+1(f) for f ∈ {α, β, γ, δ}.

3.1 Computing Ii(α), Ii(β), and Ii(δ) for all i ∈ [1, n]
In light of Lemma 7, for each f ∈ {α, β, δ}, we compute Ii(f) for all i = 1, 2, . . . , n in O(n)
time, as follows.

We discuss the case for δ first. According to Lemma 4, δ(i, j) can be computed in constant
time for any pair (i, j) with 1 ≤ i ≤ n. We can compute Ii(δ) for all i ∈ [1, n] in O(n) time
by the following simple algorithm. We first compute I1(δ), which is done by computing
δ(1, j) from j = 1 incrementally until the first time δ(1, j) ≤ λ. Then, to compute I2(δ),

6 Diameter-Optimally Augmenting Paths

v1
vi

vj
vn

vk−1

vk

Figure 4 Illustrating the path (the dotted curve) from vn to vk−1 using the edge e(i, j).

we compute δ(2, j) from j = I1(δ) incrementally until the first time δ(2, j) ≤ λ. Next, we
compute Ii(δ) for i = 3, 4, . . . , n in the same way. The total time is O(n). The correctness is
based on the monotonicity property of Ii(δ) in Lemma 7.

To compute Ii(α) or Ii(β) for i = 1, 2, . . . , n, using a similar approach as above, we can
only have an O(n logn) time algorithm since computing each α(i, j) or β(i, j) takes O(logn)
time by Lemma 4. In the following Lemma 8, we give another approach that only needs
O(n) time.

I Lemma 8. Ii(α) and Ii(β) for all i = 1, 2, . . . , n can be computed in O(n) time.

Proof. We only discuss the case for β since the other case for α is analogous.
The key idea is that for each pair (i, j), instead of computing the exact value of β(i, j), it

is sufficient to determine whether β(i, j) ≤ λ. In what follows, we show that with O(n) time
preprocessing, we can determine whether β(i, j) ≤ λ in O(1) time for any index pair (i, j)
with 1 ≤ i ≤ j ≤ n.

Let k be the smallest index in [1, n] such that dP (k, n) ≤ λ. This implies that dP (k−1, n) >
λ if k > 1. As preprocessing, we compute the index k, which can be easily done in O(n) time
(or even in O(logn) time by binary search).

Consider any pair (i, j) for 1 ≤ i ≤ j ≤ n. Our goal is to determine whether β(i, j) ≤ λ.
1. If k ≤ i, then it is vacuously true that β(i, j) ≤ λ.
2. If k > j, then β(i, j) > λ.
3. If i < k ≤ j, a crucial observation is that β(i, j) ≤ λ if and only if the length of the path

from vn to vk−1 using the new edge e(i, j), i.e., dP (i, k− 1) + |vivj |+dP (j, n), is less than
or equal to λ. See Fig. 4. Clearly, the above path length can be computed in constant
time, and thus, we can determine whether β(i, j) ≤ λ in constant time.

Therefore, we can determine whether β(i, j) ≤ λ in constant time for any pair (i, j) with
1 ≤ i ≤ j ≤ n. With this result, we can use a similar algorithm as the above for computing
Ii(δ) to compute Ii(β) for all i ∈ [1, n] in O(n) time. The lemma thus follows. J

Due to the γ-computation difficulty mentioned in Section 2, it is not clear whether it
possible to compute Ii(γ) for all i = 1, . . . , n in O(n logn) time.

Recall that λ is feasible if and only if there exists an i ∈ [1, n] such that [1, Ii(α)] ∩
[Ii(β), n] ∩ [1, Ii(γ)] ∩ [Ii(δ), n] 6= ∅. Now that Ii(f) for all i = 1, 2, . . . , n and f ∈ {α, β, δ}
have been computed but the Ii(γ)’s are not known, in the following we will use an “indirect”
approach to determine whether the intersection of the above four intervals is empty for every
i ∈ [1, n].

3.2 Determining the Feasibility of λ
For each i ∈ [1, n], define Qi = [1, Ii(α)] ∩ [Ii(β), n] ∩ [1, Ii(γ)] ∩ [Ii(δ), n]. Our goal is to
determine whether Qi is empty for each i = 1, 2, . . . , n.

H. Wang 7

i

ai

j

gjgj + 1

Figure 5 Illustrating the graph G(i, ai) with gj + 1 ≤ ai.

Consider any i ∈ [1, n]. Since Ii(f) for each f ∈ {α, β, δ} is known, we can determine the
intersection [1, Ii(α)] ∩ [Ii(β), n] ∩ [Ii(δ), n] in constant time. If the intersection is empty,
then we know that Qi = ∅. In the following, we assume the intersection is not empty.

Let ai be the smallest index in the above intersection. As in [10], an easy observation is
that Qi 6= ∅ if and only if ai ∈ [1, Ii(γ)]. If ai ≤ i (note that ai ≤ i actually implies ai = i

since ai ≥ Ii(β) ≥ i), it is obviously true that ai ∈ [1, Ii(γ)] since i ≤ Ii(γ). Otherwise (i.e.,
i < ai), according to the definition of Ii(γ), ai ∈ [1, Ii(γ)] if and only if γ(i, ai) ≤ λ. Große
et al. [10] gave an approach that can determine whether γ(i, ai) ≤ λ in O(logn) time after
O(n logn) time preprocessing. In the following, by new observations and with the help of the
range minima data structure [2, 11], we show that whether γ(i, ai) ≤ λ can be determined in
constant time after O(n) time preprocessing.

For each j ∈ [1, n], define gj as the largest index k in [j, n] such that dP (j, k) ≤ λ. Observe
that g1 ≤ g2 ≤ · · · ≤ gn.

Consider any i and the corresponding ai with i < ai. Our goal is to determine
whether γ(i, ai) ≤ λ. Since we are talking about γ(i, ai), we are essentially considering
the graph G(i, ai). Recall that C(i, ai) is the cycle P (i, ai) ∪ e(i, ai). By Observation 5,
γ(i, ai) = maxi≤k≤l≤ai

dC(i,ai)(k, l), and further, dC(i,j)(k, l) = min{dP (k, l), d1
C(i,ai)(k, l)}

and d1
C(i,ai)(k, l) = dP (i, k) + |vivai

|+ dP (l, ai).
For any j ∈ [i, ai − 1], if gj ≤ ai − 1, then vertex gj + 1 is in the cycle C(i, ai). Note that

d1
C(i,ai)(j, gj + 1) = dP (i, j) + |vivai |+ dP (gj + 1, ai). See Fig. 5.
We have the following lemma.

I Lemma 9. γ(i, ai) ≤ λ if and only if for each j ∈ [i, ai−1], either gj ≥ ai or d1
C(i,ai)(j, gj+

1) ≤ λ.

Proof. Suppose γ(i, ai) ≤ λ. Consider any j ∈ [i, ai − 1] such that gj ≤ ai − 1. Below we
prove d1

C(i,ai)(j, gj + 1) ≤ λ must hold.
By the definition of gj , it holds that dP (j, gj+1) > λ. Since γ(i, ai) ≤ λ and dC(i,ai)(j, gj+
1) ≤ γ(i, ai), we obtain dC(i,ai)(j, gj+1) ≤ λ. Note that dC(i,ai)(j, gj+1) = min{dP (j, gj+
1), d1

C(i,ai)(j, gj + 1)}. Hence, it must hold that d1
C(i,ai)(j, gj + 1) ≤ λ.

This proves one direction of the lemma.
Suppose it is true that for each j ∈ [i, ai − 1], either gj ≥ ai or d1

C(i,ai)(j, gj + 1) ≤ λ. We
prove γ(i, ai) ≤ λ below.
Consider any pair of indices (k, l) with i ≤ k ≤ l ≤ ai. To prove γ(i, ai) ≤ λ, it is sufficient
to show that dC(i,ai)(k, l) ≤ λ. If k = l, then dC(i,ai)(k, l) = 0 and thus dC(i,ai)(k, l) ≤ λ
obviously holds. In the following we assume k < l. This implies that k ≤ ai − 1. Hence,
either gk ≥ ai or d1

C(i,ai)(k, gk + 1) ≤ λ.
Recall that dC(i,ai)(k, l) = min{dP (k, l), d1

C(i,ai)(k, l)}.
If gk ≥ ai, then l ≤ ai ≤ gk, and thus, dP (k, l) ≤ λ by the definition of gk. Hence, we
obtain dC(i,ai)(k, l) ≤ λ.

8 Diameter-Optimally Augmenting Paths

Otherwise, we have d1
C(i,ai)(k, gk + 1) ≤ λ. If l ≤ gk, we again have dP (k, l) ≤ λ and thus

dC(i,ai)(k, l) ≤ λ. If l ≥ gk + 1, then dP (l, ai) ≤ dP (gk + 1, ai). Hence, d1
C(i,ai)(k, l) =

dP (i, k) + |vivai
|+ dP (l, ai) ≤ dP (i, k) + |vivai

|+ dP (gk + 1, ai) = d1
C(i,ai)(k, gk + 1) ≤ λ.

Consequently, we again obtain dC(i,ai)(k, l) ≤ λ.
This proves the other direction of the lemma.

J

Recall that g1 ≤ g2 ≤ · · · ≤ gn. For each k ∈ [1, n], define hk to be the smallest index j
in [1, k] with gj ≥ k. Observe that h1 ≤ h2 ≤ · · · ≤ hn.

Note that if i < hai
, then for each j ∈ [i, hai

− 1], gj < ai and gj + 1 ≤ ai. Due to the
preceding lemma, we further have the following lemma.

I Lemma 10. γ(i, ai) ≤ λ if and only if either hai
≤ i or d1

C(i,ai)(j, gj + 1) ≤ λ holds for
each j ∈ [i, hai

− 1].

Proof. Suppose γ(i, ai) ≤ λ. If hai
≤ i, then we do not need to prove anything. In the

following, we assume hai > i. Consider any j ∈ [i, hai − 1]. Our goal is to show that
d1
C(i,ai)(j, gj + 1) ≤ λ holds.

Indeed, since γ(i, ai) ≤ λ, by Lemma 9, we have either gj ≥ ai or d1
C(i,ai)(j, gj + 1) ≤ λ.

Since j ∈ [i, hai − 1], gj < ai. Hence, it must be that d1
C(i,ai)(j, gj + 1) ≤ λ.

This proves one direction of the lemma.
Suppose either hai

≤ i or d1
C(i,ai)(j, gj + 1) ≤ λ holds for each j ∈ [i, hai

− 1]. Our goal is
to show that γ(i, ai) ≤ λ. Consider any k ∈ [i, ai − 1]. By Lemma 9, it is sufficient to
show that either gk ≥ ai or d1

C(i,ai)(k, gk + 1) ≤ λ.
If hai ≤ i, then since k ≥ i, we obtain gk ≥ ai by the definition of hai .
Otherwise, d1

C(i,ai)(j, gj + 1) ≤ λ holds for each j ∈ [i, hai
− 1]. If k ≥ hai

, then we still
have gk ≥ ai. Otherwise, k is in [i, hai

− 1], and thus it holds that d1
C(i,ai)(k, gk + 1) ≤ λ.

This proves the other direction of the lemma.
J

Let |C(i, ai)| denote the total length of the cycle C(i, ai), i.e., |C(i, ai)| = dP (i, ai) +
|vivai

|. The following observation is crucial because it immediately leads to our algorithm in
Lemma 12.

I Observation 11. γ(i, ai) ≤ λ if and only if either hai
≤ i or minj∈[i,hai

−1]{dP (j, gj+1)} ≥
|C(i, ai)| − λ.

Proof. Suppose hai > i. Then, for each j ∈ [i, hai − 1], gj < ai and gj + 1 ≤ ai. Note that
d1
C(i,ai)(j, gj + 1) = |C(i, ai)| − dP (i, gj + 1). Hence, d1

C(i,ai)(j, gj + 1) ≤ λ is equivalent to
dP (j, gj + 1) ≥ |C(i, ai)| − λ. Therefore, d1

C(i,ai)(j, gj + 1) ≤ λ holds for each j ∈ [i, hai
− 1]

if and only if minj∈[i,hai
−1]{dP (j, gj + 1)} ≥ |C(i, ai)| − λ.

By Lemma 10, the observation follows. J

I Lemma 12. With O(n) time preprocessing, given any i ∈ [1, n] and the corresponding ai
with i < ai, whether γ(i, ai) ≤ λ can be determined in constant time.

Proof. As preprocessing, we first compute gj for all j = 1, 2, . . . , n, which can be done in
O(n) time due to the monotonicity property g1 ≤ g2 ≤ . . . ≤ gn. Then, we compute hk for
all k = 1, 2, . . . , n, which can also be done in O(n) time due to the monotonicity property
h1 ≤ h2 ≤ . . . ≤ hn. Next, we compute an array B[1, . . . , n] with B[j] = dP (j, gj + 1) for
each j ∈ [1, n] (let dP (j, gj + 1) =∞ if gj + 1 > n). We build a range-minima data structure

H. Wang 9

on B [2, 11]. The range minima data structure can be built in O(n) time such that given any
pair (i, j) with 1 ≤ i ≤ j ≤ n, the minimum value of the subarray B[i · · · j] can be returned
in constant time [2, 11]. This finishes the preprocessing step, which takes O(n) time in total.

Consider any i and the corresponding ai with i < ai. Our goal is to determine whether
γ(i, ai) ≤ λ, which can be done in O(1) time as follows.

By Observation 11, γ(i, ai) ≤ λ if and only if either hai
≤ i or minj∈[i,hai

−1]{dP (j, gj +
1)} ≥ |C(i, ai)| − λ. Since hai has been computed in the preprocessing, we check whether
hai
≤ i is true. If yes, then we are done with the assertion that γ(i, ai) ≤ λ. Otherwise, we

need to determine whether minj∈[i,hai
−1]{dP (j, gj + 1)} ≥ |C(i, ai)| − λ holds. To this end,

we first compute minj∈[i,hai
−1]{dP (j, gj + 1)} in constant time by querying the range-minima

data structure on B with (i, hai
− 1). Note that |C(i, ai)| can be computed in constant time.

Therefore, we can determine whether γ(i, ai) ≤ λ in O(1) time. This proves the lemma. J

With Lemma 12, the decision problem can be solved in O(n) time. The proof of the
following theorem summarizes our algorithm.

I Theorem 13. Given any λ, we can determine whether λ is feasible in O(n) time, and
further, if λ is feasible, a feasible edge can be found in O(n) time.

Proof. First, we do the preprocessing in Lemma 4 in O(n) time. Then, for each f ∈ {α, β, δ},
we compute Ii(f) for all i = 1, 2, . . . , n, in O(n) time. We also do the preprocessing in
Lemma 12.

Next, for each i ∈ [1, n], we do the following. Compute the intersection [1, Ii(α)] ∩
[Ii(β), n] ∩ [Ii(δ), n] in constant time. If the intersection is empty, then we are done for this
i. Otherwise, obtain the smallest index ai in the above intersection. If ai ≤ i, then we
stop the algorithm with the assertion that λ is feasible and report e(i, ai) as a feasible edge.
Otherwise, we use Lemma 12 to determine whether γ(i, ai) ≤ λ in constant time. If yes, we
stop the algorithm with the assertion that λ is feasible and report e(i, ai) as a feasible edge.
Otherwise, we proceed on i+ 1.

If the algorithm does not stop after we check all i ∈ [1, n], then we stop the algorithm
with the assertion that λ is not feasible. Clearly, we spend O(1) time on each i, and thus,
the total time of the algorithm is O(n). J

4 The Optimization Problem

In this section, we present our algorithm that solves the optimization problem in O(n logn)
time, by making use of our algorithm for the decision problem given in Section 3 (we will
refer to it as the decision algorithm). It is sufficient to compute λ∗, after which we can use
our decision algorithm to find an optimal new edge in additional O(n) time.

We start with an easy observation that λ∗ must be equal to the diameter D(i, j) of G(i, j)
for some pair (i, j) with 1 ≤ i ≤ j ≤ n. Further, by Observation 2, λ∗ is equal to f(i, j) for
some f ∈ {α, β, γ, δ} and some pair (i, j) with 1 ≤ i ≤ j ≤ n.

For each f ∈ {α, β, γ, δ}, define Sf = {f(i, j) | 1 ≤ i ≤ j ≤ n}. Let S = ∪f∈{α,β,γ,δ}Sf .
According to our discussion above, λ∗ is in S. Further, note that λ∗ is the smallest feasible
value of S. We will not compute the entire set S since |S| = Ω(n2). For each f ∈ {α, β, γ, δ},
let λf be the smallest feasible value in Sf . Hence, we have λ∗ = min{λα, λβ , λγ , λδ}.

In the following, we first compute λα, λβ , λδ in O(n logn) time by using our decision
algorithm and the sorted-matrix searching techniques [7, 8].

10 Diameter-Optimally Augmenting Paths

4.1 Computing λα, λβ, and λδ
For convenience, we begin with computing λβ .

We define an n× n matrix M [1 · · ·n; 1 · · ·n]: For each 1 ≤ i ≤ n and 1 ≤ j ≤ n, define
M [i, j] = β(i, j) if j ≥ i and M [i, j] = β(i, i) otherwise. By Observation 3, the following
lemma shows that M is a sorted matrix in the sense that each row is sorted in descending
order from left to right and each column is sorted in descending order from top to bottom.

I Lemma 14. For each 1 ≤ i ≤ n, M [i, j] ≥ M [i, j + 1] for any j ∈ [1, n − 1]; for each
1 ≤ j ≤ n, M [i, j] ≥M [i+ 1, j] for any i ∈ [1, n− 1].

Proof. Consider any two adjacent matrix elements M [i, j] and M [i, j + 1] in the same
row. If j ≥ i, then M [i, j] = β(i, j) and M [i, j + 1] = β(i, j + 1). By Observation 3,
M [i, j] ≥ M [i, j + 1]. If j < i, then M [i, j] = M [i, j + 1] = β(i, i). Hence, in either case,
M [i, j] ≥M [i, j + 1] holds.

Consider any two adjacent matrix elements M [i, j] and M [i+ 1, j] in the same column.
If j ≥ i+ 1, then M [i, j] = β(i, j) and M [i+ 1, j] = β(i+ 1, j). By Observation 3, we obtain
M [i, j] ≥ M [i, j + 1]. If j < i + 1, then M [i, j] = β(j, j) and M [i, j + 1] = β(j + 1, j + 1).
Note that β(j, j) is essentially equal to dP (j, n) and β(j + 1, j + 1) is equal to dP (j + 1, n).
Clearly, dP (j, n) ≥ dP (j + 1, n). Hence, in either case, M [i, j] ≥M [i, j + 1]. J

Note that each element of Sβ is in M and vice versa. Since λβ is the smallest feasible
value of Sβ , λβ is also the smallest feasible value of M . We do not construct M explicitly.
Rather, given any i and j, we can “evaluate” M [i, j] in O(logn) time since β(i, j) can be
computed in O(logn) time if i ≤ j by Lemma 4. Using the sorted-matrix searching techniques
[7, 8], we can find λβ in M by calling our decision algorithm O(logn) times and evaluating
O(n) elements of M . The total time on calling the decision algorithm is O(n logn) and the
total time on evaluating matrix elements is also O(n logn). Hence, we can compute λβ in
O(n logn) time.

Computing λα and λδ can done similarly in O(n logn) time, although the corresponding
sorted matrices may be defined slightly differently. We omit the details. However, we cannot
compute λγ in O(n logn) time in the above way, and again this is due to the λ-computation
difficulty mentioned in Section 2.

Note that having λα, λβ , and λδ essentially reduces our search space for λ∗ from S to
Sγ ∪ {λα, λβ , λδ}.

We compute λ1 = min{λα, λβ , λδ}. Thus, λ∗ = min{λ1, λγ}. Hence, if λγ ≥ λ1, then
λ∗ = λ1 and we are done for computing λ∗. Otherwise (i.e., λγ < λ1), it must be that
λ∗ = λγ and we need to compute λγ . To compute λγ , again we cannot use the similar way
as the above for computing λβ . Instead, we use the following approach. We should point out
that the success of the approach relies on the information implied by λγ < λ1.

4.2 Computing λ∗ in the Case λγ < λ1

We assume λγ < λ1. Hence, λ∗ = λγ . Let e(i∗, j∗) be the new edge added to P in an optimal
solution. We also call e(i∗, j∗) an optimal edge.

Since λ∗ = λγ < λ1, we have the following observation.

I Observation 15. If λγ < λ1 and e(i∗, j∗) is an optimal edge, then λ∗ = γ(i∗, j∗).

Proof. Assume to the contrary that λ∗ 6= γ(i∗, j∗). Then, by Observation 2, λ∗ is equal to
one of α(i∗, j∗), β(i∗, j∗), and δ(i∗, j∗). Without loss of generality, assume λ∗ = α(i∗, j∗).

H. Wang 11

λ1
α

γ

β
δ

ai∗ai∗ − 1 ai∗ + 1

Figure 6 Illustrating f(i∗, j) as j changes for f ∈ {α, β, γ, δ}. The three indices ai∗ − 1, ai∗ , and
ai∗ + 1 are shown.

Since α(i∗, j∗) is in Sα, λ∗ must be the smallest feasible value of Sα, i.e., λ∗ = λα. However,
this contradicts with that λ∗ = λγ < λ1 = min{λα, λβ , λγ} ≤ λα. J

For any i ∈ [1, n], for each f ∈ {α, β, γ, δ}, with respect to λ1, we define I ′i(f) in a similar
way to Ii(f) defined in Section 3 with respect to λ except that we change “≤ λ” to “< λ1”.
Specifically, define I ′i(α) to be the largest index j ∈ [i, n] such that α(i, j) < λ1. I ′(γ) is
defined similarly to I ′i(α). If β(i, n) < λ1, then define I ′i(β) to be the smallest index j ∈ [i, n]
such that β(i, j) < λ1; otherwise I ′i(β) =∞. I ′i(δ) is defined similarly to I ′i(β). Note that
similar monotonicity properties for I ′i(f) with f ∈ {α, β, γ, δ} to those in Lemma 7 also hold.

Recall that e(i∗, j∗) is an optimal edge. An easy observation is that since λ1 is strictly
larger than λ∗, the intersection [1, I ′i∗(α)] ∩ [I ′i∗(β), n] ∩ [I ′i∗(δ), n] cannot be empty. Let ai∗
be the smallest index in the above intersection. Note that i∗ ≤ ai∗ since i∗ ≤ I ′i∗(β) ≤ ai∗ .
The following lemma shows that e(i∗, ai∗) is actually an optimal edge.

I Lemma 16. If λγ < λ1 and e(i∗, j∗) is an optimal edge, then j∗ = ai∗ .

Proof. For any pair (i, j) with 1 ≤ i ≤ j ≤ n, let η(i, j) = max{α(i, j), β(i, j), δ(i, j)}. By
Observation 2, D(i, j) = max{γ(i, j), η(i, j)}.

We first prove the following claim: If γ(i∗, ai∗) ≥ η(i∗, ai∗), then j∗ = ai∗ (e.g., see
Fig. 6).

On the one hand, consider any j ∈ [i∗, ai∗ − 1]. By the definition of ai∗ , η(i∗, j) ≥ λ1.
Since λ1 > λγ = λ∗, η(i∗, j) > λ∗. By Observation 2, D(i∗, j) ≥ η(i∗, j) > λ∗. Hence, j
cannot be j∗ since otherwise D(i∗, j) would be equal to λ∗, incurring contradiction.

On the other hand, consider any j ∈ [a∗+ 1, n]. By Observation 2, D(i∗, j) ≥ γ(i∗, j). By
Observation 3, γ(i∗, j) ≥ γ(i∗, ai∗). Hence, D(i∗, j) ≥ γ(i∗, ai∗). Further, since γ(i∗, ai∗) ≥
η(i∗, ai∗) (the claim hypothesis), we have D(i∗, ai∗) = max{γ(i∗, ai∗), η(i∗, ai∗)} = γ(i∗, ai∗).
Therefore, we obtain D(i∗, ai∗) ≤ D(i∗, j). This implies that j∗ = ai∗ . Hence, the claim
follows.

We proceed to prove the lemma. Based on the above claim, it is sufficient to show that
γ(i∗, ai∗) ≥ η(i∗, ai∗), as follows.

Assume to the contrary that γ(i∗, ai∗) < η(i∗, ai∗). Then, D(i∗, ai∗) = η(i∗, ai∗). Ac-
cording to the definition of ai∗ , η(i∗, ai∗) < λ1. Hence, D(i∗, ai∗) < λ1. Let λ′ = D(i∗, ai∗).
Since λ′ = η(i∗, ai∗), λ′ is a value in Sα ∪Sβ ∪Sδ. Since λ′ = D(i∗, ai∗), λ′ is a feasible value
(i.e., λ′ ≥ λ∗). Recall that λ1 is the smallest feasible value of Sα ∪ Sβ ∪ Sδ. Thus, we obtain
contradiction since λ′ < λ1.

Therefore, γ(i∗, ai∗) ≥ η(i∗, ai∗) holds. The lemma thus follows. J

Lemma 16 is crucial because it immediately suggests the following algorithm.
We first compute the indices I ′i(α), I ′i(β), I ′i(δ) for i = 1, . . . , n. This can be done in O(n)

time using the similar algorithms as those for computing Ii(α), Ii(β), Ii(δ) in Section 3.1. In

12 Diameter-Optimally Augmenting Paths

fact, here we can even afford O(n logn) time to compute these indices. Hence, for simplicity,
we can use the similar algorithm as that for computing Ii(δ) in Section 3.1 instead of the
one in Lemma 8. The total time is O(n logn).

Next, for each i ∈ [1, n], if [1, I ′i(α)] ∩ [I ′i(β), n] ∩ [I ′i(δ), n] 6= ∅, then we compute ai, i.e.,
the smallest index in the above intersection. Let I be the set of index i such that the above
interval intersection for i is not empty. Lemma 16 leads to the following observation.

I Observation 17. If λγ < λ1, then λ∗ is the smallest feasible value of the set {γ(i, ai) | i ∈
I}.

Proof. By Lemma 16, one of the edges of {e(i, ai) | i ∈ I} is an optimal edge. By
Observation 15, λ∗ is in {γ(i, ai) | i ∈ I}. Thus, λ∗ is the smallest feasible value in
{γ(i, ai) | i ∈ I}. J

We can further obtain the following “stronger” result, although Observation 17 is sufficient
for our algorithm.

I Lemma 18. If λγ < λ1, then λ∗ = mini∈I γ(i, ai).

Proof. For any pair (i, j) with 1 ≤ i ≤ j ≤ n, let η(i, j) = max{α(i, j), β(i, j), δ(i, j)}. By
Observation 2, D(i, j) = max{γ(i, j), η(i, j)}.

We first prove the following claim: For any i ∈ I, η(i, ai) < γ(i, ai). Indeed, assume
to the contrary that η(i, ai) ≥ γ(i, ai) for some i ∈ I. Then, D(i, ai) = η(i, ai). By the
definition of ai, η(i, ai) < λ1. Hence, D(i, ai) < λ1. Let λ′ = D(i, ai). Note that λ′ is a
feasible value that is in Sα ∪ Sβ ∪ Sδ. However, λ′ < λ1 contradicts with that λ1 is the
smallest feasible value in Sα ∪ Sβ ∪ Sδ.

Next, we prove the lemma by using the above claim. For each i ∈ I, by the above clam,
D(i, ai) = γ(i, ai), and thus, γ(i, ai) is a feasible value. By Lemma 16, we know that λ∗ is in
{γ(i, ai) | i ∈ I}. Therefore, λ∗ is the smallest value in {γ(i, ai) | i ∈ I}. The lemma thus
follows. J

Observation 17 essentially reduces the search space for λ∗ to {γ(i, ai) | i ∈ I}, which has
at most O(n) values. It is tempting to first explicitly compute the set and then find λ∗ from
the set. However, again, due to the γ-computation difficulty, we are not able to compute the
set in O(n logn) time. Alternatively, we use the following approach to compute λ∗.

4.3 Finding λ∗ in the Set {γ(i, ai) | i ∈ I}
Recall that according to Observation 5, γ(i, j) = maxi≤k≤l≤j dC(i,j)(k, l), with dC(i,j)(k, l) =
min{dP (k, l), d1

C(i,j)(k, l)} and d1
C(i,j)(k, l) = dP (i, k) + |vivj | + dP (l, j). Hence, γ(i, j) is

equal to dP (k, l) or d1
C(i,j)(k, l) for some k ≤ l. Therefore, by Observation 17, there exists

i ∈ I such that λ∗ is equal to dP (k, l) or d1
C(i,j)(k, l) for some k and l with i ≤ k ≤ l ≤ ai.

Let Sp = {dP (k, l) | 1 ≤ k ≤ l ≤ n} and Sc = {d1
C(i,j)(k, l) | i ≤ k ≤ l ≤ ai, i ∈ I}. Based

on our above discussion, λ∗ is in Sp ∪Sc. Further, λ∗ is the smallest feasible value in Sp ∪Sc.
Let λp be the smallest feasible value of Sp and let λc be the smallest feasible value of

Sc. Hence, λ∗ = min{λp, λc}. By using the technique of searching sorted-matrices [7, 8], the
following lemma computes λp in O(n logn) time.

I Lemma 19. λp can be computed in O(n logn) time.

H. Wang 13

i

ai

k

l − 1l

h′
ai

g′k

Figure 7 Illustrating the graph G(i, ai) whose diameter is λ∗ and λ∗ = dC(i,ai)(k, l).

Proof. We define an n × n matrix M [1 · · ·n; 1 · · ·n]: For each 1 ≤ i ≤ n and 1 ≤ j ≤ n,
define M [i, j] = dP (i, j) if j ≥ i and M [i, j] = 0 otherwise. It is easy to verify that each row
ofM is sorted in ascending order from the left to right and each column is sorted in ascending
order from bottom to top. Consequently, by using the sorted-matrix searching technique
[7, 8], λp can be found by calling our decision algorithm O(logn) times and evaluating O(n)
elements of M . Clearly, given any i and j, we can evaluate M [i, j] in constant time. Hence,
λp can be computed in O(n logn) time. J

Recall that λ∗ = min{λp, λc}. In the case λp ≤ λc, λ∗ = λp and we are done with
computing λ∗. In the following, we assume λp > λc. Thus, λ∗ = λc. With the help of the
information implied by λp > λc, we will compute λ∗ in O(n logn) time. The details are given
below.

For any j ∈ [1, n], let g′j denote the largest index k ∈ [j, n] such that the subpath length
dP (j, k) is strictly smaller than λp. Note that the definition of g′j is similar to gj defined in
Section 4.3 except that we change “≤ λ” to “< λp”.

For each k ∈ [1, n], let h′k denote the smallest index j ∈ [1, k] with g′j ≥ k. Let I ′ be the
subset of i ∈ I ′ such that i ≤ h′ai

− 1. Hence, for each i ∈ I ′ and each j ∈ [i, h′ai
− 1], g′j < ai

and thus g′j + 1 ≤ ai.
For each i ∈ I ′, define d1

max(i, ai) = maxj∈[i,h′ai
−1] d

1
C(i,j)(j, g′j + 1). The following lemma

gives a way to determine λ∗.

I Lemma 20. If λγ < λ1 and λc < λp, then λ∗ = d1
max(i, ai) for some i ∈ I ′.

Proof. Since λγ < λ1 and λc < λp, by our above discussions, λ∗ = λc.
By Observation 17, λ∗ is the diameter of the graph G(i, ai) for some i ∈ I and λ∗ is equal

to the length of the shortest path of two vertices vk and vl in C(i, ai) for i ≤ k ≤ l ≤ ai,
i.e., λ∗ = dC(i,ai)(k, l) = min{dP (k, l), d1

C(i,j)(k, l)}. See Fig. 7. Since λ∗ = λc, we further
know that λ∗ = d1

C(i,j)(k, l) and d1
C(i,j)(k, l) ≤ dP (k, l). In fact, d1

C(i,j)(k, l) < dP (k, l), since
otherwise if d1

C(i,j)(k, l) = dP (k, l), then λ∗ = dP (k, l) would be in the set Sp, contradicting
with that λp is the smallest feasible value in Sp and λ∗ < λp.

For simplicity of discussion, we assume |vlvl−1| > 0 (since otherwise we can keep updating
l to l − 1 until we find |vlvl−1| > 0; note that such an l will eventually be found before we
reach k since 0 ≤ λ∗ = d1

C(i,j)(k, l) < dP (k, l)).
We prove the following claim: dP (k, l − 1) < λp ≤ dP (k, l).

On the one hand, since λ∗ = d1
C(i,ai)(k, l) and |vlvl−1| > 0, we obtain that λ∗ <

d1
C(i,ai)(k, l − 1). Since λ∗ is the diameter in the graph G(i, ai), dG(i,ai)(k, l − 1) =
dC(i,ai)(k, l−1) ≤ λ∗. Further, because dC(i,ai)(k, l−1) = min{dP (k, l−1), d1

C(i,ai)(k, l−
1)} and λ∗ < d1

C(i,ai)(k, l − 1), we obtain dP (k, l − 1) ≤ λ∗. As λ∗ = λc < λp, it follows
that dP (k, l − 1) < λp.

14 Diameter-Optimally Augmenting Paths

On the other hand, assume to the contrary that λp > dP (k, l). Then, since dP (k, l) >
d1
C(i,ai)(k, l) = λ∗, dP (k, l) is a feasible value. Clearly, dP (k, l) is in the set Sp. However,
λp > dP (k, l) contradicts with that λp is the smallest feasible value in Sp.

This proves the claim. With the claim, we show below that λ∗ = d1
max(i, ai), which will

prove the lemma.
We first show that i is in I ′, i.e., i ≤ h′ai

− 1. Indeed, since λp ≤ dP (k, l) (by the claim),
based on the definition of g′k, it holds that g′k < l (e.g., see Fig. 7). Since l ≤ ai, we obtain
g′k ≤ ai − 1. This implies that k < h′ai

and thus k ≤ h′ai
− 1. Since i ≤ k, i ≤ h′ai

− 1.
It remains to prove λ∗ = d1

max(i, ai). Indeed, recall that λ∗ = d1
C(i,ai)(k, l). Note

that the above claim in fact implies that g′k = l − 1, and thus, g′k + 1 = l. Hence, we
have λ∗ = d1

C(i,ai)(k, l) = d1
C(i,ai)(k, g′k + 1). Note that k is in [i, h′ai

− 1]. Consider any
j ∈ [i, h′ai

− 1]. To prove λ∗ = d1
max(i, ai), it is now sufficient to prove λ∗ ≥ d1

C(i,ai)(j, g′j + 1),
as follows.

Recall that g′j + 1 = l ≤ ai. Since λ∗ is the diameter of G(i, ai), dG(i,ai)(j, g′j + 1) =
dC(i,ai)(j, g′j + 1) ≤ λ∗. Recall that dC(i,ai)(j, g′j + 1) = min{dP (j, g′j + 1), d1

C(i,ai)(j, g′j + 1)}.
By the definition of g′j , we know that dP (j, g′j + 1) ≥ λp. Since λp > λ∗, dP (j, g′j + 1) > λ∗.
Hence, it must be that λ∗ ≥ d1

C(i,ai)(j, g′j + 1).
This proves that λ∗ = d1

max(i, ai). The lemma thus follows. J

In light of Lemma 20, in the case of λc < λp, λ∗ = λc is the smallest feasible value of
d1

max(i, ai) for all i ∈ I ′. Note that the number of such values d1
max(i, ai) is O(n). Hence, if

we can compute d1
max(i, ai) for all i ∈ I ′, then λ∗ can be easily found in additional O(n logn)

time using our decision algorithm, e.g., by first sorting these values and then doing binary
search.

The next lemma gives an algorithm that can compute d1
max(i, ai) for all i ∈ I ′ in O(n)

time, with the help of the range-minima data structure [2, 11].

I Lemma 21. d1
max(i, ai) for all i ∈ I ′ can be computed in O(n) time.

Proof. Consider any i ∈ I ′. For any j ∈ [i, h′ai−1], it is easy to see that d1
C(i,ai)(j, gj + 1) =

|C(i, ai)| − dP (j, gj + 1), where |C(i, ai)| is the length of the cycle C(i, ai). Hence, we can
obtain the following,

d1
max(i, ai) = max

j∈[i,h′ai
−1]

d1
C(i,j)(j, g′j + 1) = max

j∈[i,h′ai
−1]
{|C(i, ai)| − dP (j, g′j + 1)}

= |C(i, ai)| − min
j∈[i,h′ai

−1]
dP (j, g′j + 1).

Define dmin(i, ai) = minj∈[i,h′ai
−1] dP (j, g′j + 1). By the above discussions we have

d1
max(i, ai) = |C(i, ai)| − dmin(i, ai). Therefore, computing d1

max(i, ai) boils down to comput-
ing dmin(i, ai). In the following, we compute dmin(i, ai) for all i ∈ I ′ in O(n) time, after
which d1

max(i, ai) for all i ∈ I ′ can be computed in additional O(n) time.
First of all, we compute g′j and h′j for all j = 1, 2, . . . , n. This can be easily done in O(n)

time due to the monotonicity properties: g′1 ≤ g′2 ≤ · · · ≤ g′n and h′1 ≤ h′2 ≤ · · · ≤ h′n. Recall
that for each i ∈ I, ai has already been computed. Then, we can compute I ′ in O(n) time
by checking whether i ≤ h′ai

− 1 for each i ∈ I.
Next we compute an array B[1 · · ·n] such that B[j] = dP (j, g′j + 1) for each j ∈ [1, n].

Clearly, the array B can be computed in O(n) time. Then, we build a range-minima data
structure on B [2, 11]. The range-minima data structure can be built in O(n) time such that
given any pair (i, j) with 1 ≤ i ≤ j ≤ n, the minimum value of the subarray B[i · · · j] can be
computed in constant time.

H. Wang 15

Finally, for each i ∈ I ′, we can compute dmin(i, ai) in constant time by querying the
range-minima data structure on B with (i, h′ai

− 1).
Therefore, we can compute dmin(i, ai) for all i ∈ I ′, and thus compute d1

max(i, ai) for all
i ∈ I ′ in O(n) time. J

In summary, we can compute λ∗ in O(n logn) time in the case λγ < λ1 and λc < λp.
Our overall algorithm for computing an optimal solution is summarized in the proof of

Theorem 22.

I Theorem 22. An optimal solution for the optimization problem can be found in O(n logn)
time.

Proof. First, we compute λα, λβ , and λδ, in O(n logn) time by using our decision algorithm
and the sorted-matrix searching techniques. Then, we compute λ1 = min{λα, λβ , λδ}.

Second, by using λ1, we compute the indices I ′i(α), I ′i(β), and I ′i(δ) for all i = 1, 2, . . . , n.
This can be done in O(n) time. For each i ∈ [1, n], if [1, I ′i(α)] ∩ [I ′i(β), n] ∩ [I ′i(δ), n] 6= ∅, we
compute ai (i.e., the smallest index in the above intersection) and add i to the set I (initially
I = ∅). Hence, all such ai’s and I can be computed in O(n) time.

If I = ∅, then we return λ1 as λ∗.
If I 6= ∅, then we compute λp in O(n logn) time by Lemma 19. We proceed to compute

d1
max(i, ai) for all i ∈ I ′ by Lemma 21, and then find the smallest feasible value λ′ in the set
{d1

max(i, ai) | i ∈ I ′} in O(n logn) time. Finally, we return min{λ1, λp, λ
′} as λ∗.

The above computes λ∗ in O(n logn) time. Applying λ = λ∗ on our decision algorithm
can eventually find an optimal edge in additional O(n) time. J

References
1 N. Alon, A. Gyárfás, and M. Ruszinkó. Decreasing the diameter of bounded degree graphs.

Journal of Graph Theory, 35:161–172, 2000.
2 M. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. of the 4th Latin

American Symposium on Theoretical Informatics, pages 88–94, 2000.
3 D. Bilò, Luciano Gualà, and Guido Proietti. Improved approximability and non-

approximability results for graph diameter decreasing problems. Theoretical Computer
Science, 417:12–22, 2012.

4 J.-L. De Carufel, C. Grimm, A. Maheshwari, and M. Smid. Minimizing the continuous dia-
meter when augmenting paths and cycles with shortcuts. In Proc. of the 15th Scandinavian
Workshop on Algorithm Theory (SWAT), pages 27:1–27:14, 2016.

5 E.D. Demaine and M. Zadimoghaddam. Minimizing the diameter of a network using short-
cut edges. In Proc. of the 12th Scandinavian conference on Algorithm Theory (SWAT),
pages 420–431, 2010.

6 F. Frati, S. Gaspers, J. Gudmundsson, and L. Mathieson. Augmenting graphs to minimize
the diameter. Algorithmica, 72:995–1010, 2015.

7 G. Frederickson and D. Johnson. Generalized selection and ranking: Sorted matrices. SIAM
Journal on Computing, 13(1):14–30, 1984.

8 G.N. Frederickson and D.B. Johnson. Finding kth paths and p-centers by generating and
searching good data structures. Journal of Algorithms, 4(1):61–80, 1983.

9 Y. Gao, D.R. Hare, and J. Nastos. The parametric complexity of graph diameter augment-
ation. Discrete Applied Mathematics, 161:1626–1631, 2013.

10 U. Große, J. Gudmundsson, C. Knauer, M. Smid, and F. Stehn. Fast algorithms for
diameter-optimally augmenting paths. In Proc. of the 42nd International Colloquium on
Automata, Languages and Programming (ICALP), pages 678–688, 2015.

16 Diameter-Optimally Augmenting Paths

11 D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13:338–355, 1984.

12 T. Ishii. Augmenting outerplanar graphs to meet diameter requirements. Journal of Graph
Theory, 74:392–416, 2013.

13 C.-L. Li, S.T. McCormick, and D. Simchi-Levi. On the minimum-cardinality-bounded-
diameter and the bounded-cardinality-minimum-diameter edge addition problems. Opera-
tions Research Letters, 11:303–308, 1992.

14 N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM, 30(4):852–865, 1983.

15 A.A. Schoone, H.L. Bodlaender, and J. Van Leeuwen. Diameter increase caused by edge
deletion. Journal of Graph Theory, 11:409–427, 1997.

	1 Introduction
	1.1 Related Work
	1.2 Our Approaches

	2 Preliminaries
	3 The Decision Problem
	3.1 Computing Ii(), Ii(), and Ii() for all i[1,n]
	3.2 Determining the Feasibility of

	4 The Optimization Problem
	4.1 Computing ,, and
	4.2 Computing * in the Case <1
	4.3 Finding * in the Set {(i,ai) | iI}

