
On the expected diameter, width, and complexity of a stochastic

convex-hull

Jie Xue∗

xuexx193@umn.edu

Yuan Li∗

lixx2100@umn.edu

Ravi Janardan∗

janardan@umn.edu

Abstract

We investigate several computational problems related to the stochastic convex hull (SCH). Given
a stochastic dataset consisting of n points in Rd each of which has an existence probability, a SCH
refers to the convex hull of a realization of the dataset, i.e., a random sample including each point with
its existence probability. We are interested in computing certain expected statistics of a SCH, includ-
ing diameter, width, and combinatorial complexity. For diameter, we establish the first deterministic
1.633-approximation algorithm with a time complexity polynomial in both n and d. For width, two ap-
proximation algorithms are provided: a deterministic O(1)-approximation running in O(nd+1 logn) time,
and a fully polynomial-time randomized approximation scheme (FPRAS). For combinatorial complexity,
we propose an exact O(nd)-time algorithm. Our solutions exploit many geometric insights in Euclidean
space, some of which might be of independent interest.

1 Introduction

As one of the most fundamental and important structures in computational geometry, the convex hull
has a wide range of applications in areas as diverse as computer graphics, pattern recognition, statistics,
robotics, and computer-aided design, among others. Traditionally, the convex hull is studied on datasets
whose information is known exactly. However, in many real-world applications, due to noise and limitation
of devices, the data obtained may be imprecise or not totally reliable. In this situation, uncertain datasets
(or stochastic datasets), in which the data points are allowed to have some uncertainty, can better model
real data. In recent years, there have been a considerable amount of work regarding geometric problems on
stochastic datasets. Among them, the convex hull structure under uncertainty, known as stochastic convex
hull (SCH), has received a lot of attention [3, 12, 14, 16].

In this paper, we revisit several problems related to SCH. The uncertainty model to be considered
is the well-known existential uncertainty model: each data point in the stochastic dataset has a certain
(known) location in the space with an uncertain existence depicted by an associated existence probability
(the existences of the points are assumed to be independent). In real-world applications, the existence
probability can be used to express the reliability or importance of each data point. Given a stochastic
dataset S in Rd equipped with existential uncertainty, a SCH of S refers to the convex hull of a realization
of S, which can be regarded as a probabilistic polytope in Rd. An effective way to study the behavior
of a SCH is to compute the expected values of its basic statistics, which is our main focus in this paper.
Expected statistics can used to express the “average-case” information of a SCH, which is quite helpful for
understanding a probabilistic polytope. In this paper, we consider three basic statistics: diameter, width,
and combinatorial complexity. Informally speaking, the diameter/width of a convex hull (or convex polytope)
captures how “large” it is, while the combinatorial complexity measures how “complicated” it is. Formal
definitions can be found in Sec. 1.3. We are interested in establishing polynomial-time algorithms (both
exact and approximate) for computing the expectations of these statistics for a SCH.

∗Dept. of Computer Science and Engg., Univ. of Minnesota — Twin Cities, 4-192 Keller Hall, 200 Union St. SE, Minneapolis,
MN 55455, USA

1

ar
X

iv
:1

70
4.

07
02

8v
2 

 [
cs

.C
G

] 
 1

 M
ay

 2
01

7



Note that solving such expectation computational problems is in general much more challenging than
computing the statistics of a convex hull in the traditional setting where there is no uncertainty. The main
difficulty is that one has to deal with exponentially many realizations of a stochastic dataset. For this reason,
many similar problems of this type were known to be #P-hard [7], while other ones usually require much
higher time costs than their non-stochastic versions. Our polynomial-time solutions exploit many geometric
insights in Euclidean space, some of which might be of independent interest.

1.1 Related work

Geometric computation on uncertain data has received considerable attentions in recent years. A general in-
troduction can be found in [13]. Many fundamental geometric problems have been studied under uncertainty,
e.g., nearest-neighbor search [1, 15], minimum spanning trees [10], closest pair [7, 11, 18], range search [2, 4],
linear separability [6, 19], dominance relation [17], etc. These problems were studied either under existential
uncertainty (which is used in this paper) or under locational uncertainty (where the locations of the data
points are uncertain).

There have also been several papers concerning SCH [3, 8, 12, 14, 16]. We only summarize those that are
strongly relevant to this paper. Li et al. [12] studied the expected computation of some basic statistics of a
SCH in R2, e.g., area, perimeter, diameter (their results for diameter are summarized below), etc. The results
in [12] are presented in a slightly different uncertainty model, but most of the algorithms also work under
existential uncertainty. Huang et al. [8] studied ε-coresets of a stochastic dataset (under both existential
and locational uncertainty), which can be used to efficiently approximate the expected directional width of
a SCH with respect to any given direction (see Sec. 1.3 for the definition of directional width). One should
note that, although the diameter (resp., width) is defined as the largest (resp., smallest) directional width,
the ε-coresets constructed in [8] cannot be used to approximate the expected diameter/width of a SCH. The
reason is simple: the direction defining the diameter/width of a SCH varies from realization to realization,
and in general the largest/smallest expected directional width (over all directions) is quite different from the
expected diameter/width of a SCH.

Specifically, the expected diameter of a SCH was investigated in some recent works. Huang and Li [7]
provided an FPRAS for computing the expected farthest-pair distance of a stochastic dataset in a metric
space. This directly implies an FPRAS for computing the expected diameter of a SCH, since in Euclidean
space the farthest-pair distance of a set of points is just the diameter of their convex hull. However, an
FPRAS can only obtain the desired approximation with high probability, and there seems no way to verify
whether an answer obtained by the FPRAS is truly a good approximation. Li et al. [12] gave a deterministic
(2/
√

3)-approximation algorithm in R2, which is based on (exactly) computing the expected diameter of
the stochastic smallest enclosing ball. Although [12] only considered the case in R2, the algorithm can be
naturally extended to compute a (

√
2d/
√
d+ 1)-approximation of the expected diameter of a SCH in Rd.

Nevertheless, the runtime of this algorithm grows exponentially as d increases, since computing the expected
diameter of the stochastic smallest enclosing ball requires nΩ(d) time [9]. The width and combinatorial
complexity of a SCH have not yet been investigated previously, to our best knowledge.

1.2 Our results

Expected diameter. As summarized in Sec. 1.1, the existing approximation algorithm for computing the
expected diameter of a SCH is not polynomial-time when the dimension d is not a fixed constant. Due to
this limitation, we investigate the problem without assuming d is fixed. We ask the following question: how
accurately one can approximate the expected diameter in (n, d)-polynomial time (i.e., time polynomial in
both the dataset-size n and the dimension d)? In this paper, we give the first algorithm which achieves
a 1.633-approximation in (n, d)-polynomial time (Theorem 5). Note that computing a 2-approximation is
fairly easy (see Appendix A). To obtain our result, however, requires insightful new ideas and nontrivial
effort. The main ingredient of our algorithm is a notion called witness sequence, which can well capture
the diameter of a polytope using only five points, and reduces the task of handling exponentially many
realizations to considering only O(n5) possible witness sequences.
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Expected width. We study the expected-width problem in Rd with a fixed dimension d. Two approxima-
tion algorithms are proposed for computing the expected width: a deterministic O(1)-approximation running
in O(nd+1 log n) time (Theorem 8), and an FPRAS (Theorem 10). Both the algorithms are based on a notion
called witness simplex, which is an analogue of the witness sequence in the expected-width problem. The
witness simplex captures the width of a polytope. It allows us to “group” exponentially many realizations
into polynomial-many groups, and thus makes polynomial-time approximations possible.

Expected combinatorial complexity. We study the expected-combinatorial-complexity problem in Rd
with a fixed dimension d. We provide an exact algorithm for computing the expected combinatorial complex-
ity of a SCH in O(nd) time. Our algorithm uses a nontrivial reduction from the problem to SCH membership
probability queries, and then takes advantage of some very recent results for the latter [6, 19]. In order to
complete the computation in O(nd) time, some new ideas are needed together with an observation in [6].

1.3 Preliminaries

We give the formal definitions of some basic notions used in this paper. A stochastic dataset in Rd is a pair
S = (S, π) where S is a set of points in Rd and π : S → (0, 1] specifies the existence probability of each point
in S. A realization of S is a random sample R ⊆ S where each point a ∈ S is sampled with probability π(a).
A stochastic convex hull (SCH) of S refers to the convex hull of a realization of S, which can be regarded as
a probabilistic polytope in Rd.

Let P be a convex polytope in Rd. The combinatorial complexity (or simply complexity) of P , denoted
by |P |, is defined as the total number of the faces of P (the dimensions of the faces vary from 0 to d − 1).
If u is a unit vector in Rd, we define the directional width of P with respect to u as

widu(P ) = sup
p,q∈P

(〈u, p〉 − 〈u, q〉) ,

where 〈·, ·〉 denotes the inner product. Let U be the set of unit vectors in Rd. Then the diameter of P is
defined as diam(P ) = supu∈U widu(P ), and the width of P is defined as wid(P ) = infu∈U widu(P ). It is
clear that the diameter of P is also the distance between the farthest-pair of points in P .

For two points x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd, we define x ≺ y if the d-tuple (x1, . . . , xd)
is smaller than the d-tuple (y1, . . . , yd) in lexicographic order. Then ≺ induces a (strict) total order on Rd,
called ≺-order.

The approximation algorithms in this paper use relative performance guarantees. Formally, if res is the
exact answer of the problem, a δ-approximation (δ ≥ 1) algorithm outputs an answer within the range
[res/δ, res], where res.

2 Approximating the expected diameter

Let S = (S, π) be a stochastic dataset in Rd (d is not assumed to be fixed), and suppose |S| = n. Our goal
in this section is to (approximately) compute the expected diameter of a SCH of S, defined as

diamS =
∑
R⊆S

Pr[R] · diam(CH(R)),

where Pr[R] denotes the probability that R occurs as a realization of S. We show in Appendix B that
computing diamS exactly is #P-hard if d is not fixed.

2.1 The witness sequence

In this section, we introduce an important notion called witness sequence which will be used in our approx-
imation algorithm. Let P be a convex polytope in Rd, and V be the vertex set of P . For any point x ∈ Rd,
we define ΦP (x) as the set of all points in P farthest from x. Formally, ΦP (x) = {y ∈ P : dist(x, y) ≥

3



dist(x, y′) for any y′ ∈ P}. Note that ΦP (x) ⊆ V , and in particular ΦP (x) is finite. Our first observation
about diam(P ) is the following.

Lemma 1 Let x ∈ Rd be a point. If there exist p, q ∈ P such that dist(p, q) = diam(P ) and ∠pxq = θ > π/2,
then for any y ∈ ΦP (x) and z ∈ ΦP (y) we have

dist(y, z) ≥ diam(P )

2 sin(π/2− θ/4)
.

Proof. Let x ∈ Rd be a point, and suppose we have p, q ∈ P such that dist(p, q) = diam(P ) and ∠pxq > π/2.
Also, let y ∈ ΦP (x) be any point. Since dist(y, z) ≥ max{dist(y, p),dist(y, q)} for any z ∈ ΦP (y), it suffices
to show

max{dist(y, p),dist(y, q)} ≥ diam(P )

2 sin(π/2− θ/4)
.

Without loss of generality, we may assume x = (0, . . . , 0), p = (α, β, 0, . . . , 0), q = (α, γ, 0, . . . , 0), where
α ≥ 0 (if this is not the case, one can properly apply an isometric transformation on Rd to make it true).
Furthermore, we may also assume dist(x, y) = 1, hence α2 + β2 ≤ 1 and α2 + γ2 ≤ 1. Since ∠pxq > π/2, we
must have βγ < 0 (so suppose β > 0 and γ < 0). We first claim that max{dist(y, p),dist(y, q)} is minimized
when

y =

(√
1− (β + γ)2

4
,
β + γ

2
, 0, . . . , 0

)
. (1)

Let y be the point with the above coordinates (see Figure 1), and r = (r1, . . . , rd) be another point satisfying

dist(x, r) = 1 (i.e.,
∑d
i=1 r

2
i = 1). First consider the case of r2 ≤ (β + γ)/2. In this case, we show that

x

y
p

q

Figure 1: The locations of x, p, q and y

dist(r, p) ≥ max{dist(y, p),dist(y, q)}. Since dist(y, p) = dist(y, q), it suffices to show dist(r, p) ≥ dist(y, p).
We have

dist2(r, p) = 1 + α2 + β2 − 2r1α− 2r2β and dist2(y, p) = 1 + α2 + β2 − 2y1α− 2y2β,

where y1 and y2 are the first two coordinates of y defined above. Now we only need to show r1α + r2β ≤
y1α + y2β. Note that r1α + r2β ≤ α

√
1− r2

2 + r2β as α ≥ 0. Define vectors v = (α, β), u = (
√

1− r2
2, r2),

w = (y1, y2). Since α ≥ 0, y1 > 0, and r2 ≤ y2 < β, the angle between v and u is greater than that between
v and w. Furthermore, ‖u‖2 = ‖w‖2 = 1. Therefore, α

√
1− r2

2 + r2β = 〈u,v〉 ≤ 〈w,v〉 = y1α + y2β,
which implies r1α+ r2β ≤ y1α+ y2β. In the other case r2 ≥ (β + γ)/2, symmetrically, we have dist(r, q) ≥
max{dist(y, p),dist(y, q)}. Therefore, we know that max{dist(y, p),dist(y, q)} is minimized when y has the
coordinates in Equation 1. Note that when y has these coordinates,

dist(y, p) = dist(y, q) =
dist(p, q)

2 sin(∠pyq/2)
=

diam(P )

2 sin(∠pyq/2)
. (2)

4



Next, we show that ∠pyq ≤ π − θ/2 where θ = ∠pxq. Since dist(x, p) ≤ dist(x, y), ∠xyp ≤ ∠xpy. Also,
since dist(x, q) ≤ dist(x, y), ∠xyq ≤ ∠xqy. It follows that ∠pyq = ∠xyp + ∠xyq ≤ ∠xpy + ∠xqy. But
∠pxq + ∠pyq + ∠xpy + ∠xqy = 2π and ∠pxq = θ, which implies that 2∠pyq ≤ 2π − θ, as desired. Using
Equation 2, we can conclude that dist(y, p) ≥ diam(P )/(2 sin(π/2− θ/4)), which completes the proof. �

Basically, Lemma 1 states that for a point x ∈ Rd, if we take y ∈ P farthest from x and z ∈ P farthest
from y, then the distance between y and z gives us a good approximation for diam(P ) as long as there exists
a pair p, q ∈ P defining diam(P ) with a large angle ∠pxq. However, without the existence of such a pair
p, q ∈ P , the approximation fails. To handle this, we need our second observation.

Lemma 2 Let v ∈ V be a vertex of P , and u ∈ ΦP (v), w ∈ ΦP (u) be two points. Suppose r is the ray with
initial point u which goes through v, and x is the point on r which has distance dist(u,w)/2 from u. Then
if there exist p, q ∈ P with dist(p, q) = diam(P ) and ∠pxq = θ, we have

dist(u,w) ≥ min

{
diam(P ),

diam(P )√
3 sin(θ/2)

}
.

Proof. Let Bv be the (closed) ball centered at u with radius dist(v, u), and Bu be the (closed) ball centered
at u with radius dist(u,w). Then we have P ⊆ Bu ∩ Bv, because u ∈ ΦP (v) and w ∈ ΦP (u). Now let
r and x be the ray and the point defined in the lemma. Define v′ as the point on r which has distance
dist(u,w) from u, so x is the midpoint of the segment connecting v′ and u. Set Bv′ to be the (closed)
ball centered at v′ with radius dist(u,w). See Figure 2 for an illustration of the balls Bu, Bv, Bv′ . Note

v u

w

v′

Bu

Bv′

Bv
P

Figure 2: An illustration of Bu, Bv, Bv′

that Bv ⊆ Bv′ , since rad(Bv′) ≥ rad(Bv) + dist(v, v′) where rad(·) denotes the radius of a ball. Therefore,
P ⊆ Bu ∩ Bv′ . Next, we claim that Bu ∩ Bv′ ⊆ Bx, where Bx is the (closed) ball centered at x with
radius

√
3 · dist(u,w)/2. Suppose y ∈ Bu ∩ Bv′ is a point, and assume dist(y, u) ≥ dist(y, v′) without loss

of generality (so ∠yxu ≥ π/2). Define µ = dist(u, x) and γ = dist(y, x). Then γ = µ · sin∠yux/ sin∠uyx.
Note that we have the restrictions ∠yxu ≥ π/2 and dist(u, y) ≤ dist(u, v′) = 2µ. Under these restrictions, it
is easy to see that γ is maximized when dist(u, y) = 2µ and ∠yxu = π/2. In this case, γ =

√
3µ = rad(Bx).

Consequently, Bu ∩ Bv′ ⊆ Bx, which in turn implies P ⊆ Bx. With this observation, we now show the
inequality in the lemma. Let p, q ∈ P ⊆ Bx be two points satisfying dist(p, q) = diam(P ) and ∠pxq = θ.
If dist(p, q) ≤ dist(u,w), we are done, so assume dist(p, q) > dist(u,w). But both dist(x, p) and dist(x, q)
are at most rad(Bx) =

√
3 · dist(u,w)/2. Therefore, θ is the largest angle of the triangle 4pxy. In this

case, it is easy to see that dist(p, q) is maximized when dist(x, p) = dist(x, q) = rad(Bx). It follows that
dist(p, q) ≤

√
3 sin(θ/2) · dist(u,w), which completes the proof. �

Lemma 2 states that for a vertex v ∈ V , if we take u ∈ P farthest from v and w ∈ P farthest from v, then the
distance between u and w gives us a good approximation for diam(P ) as long as there exists a pair p, q ∈ P
defining diam(P ) with a small angle ∠pxq (see the lemma for the definition of x). The approximation is
not satisfactory when ∠pxq is large. Fortunately, we already have Lemma 1, which is helpful for this case.
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Indeed, in the case that ∠pxq is large, if we further take y ∈ P farthest from x and z ∈ P farthest from y,
then Lemma 1 implies that the distance between y and z is a good approximation for diam(P ). Therefore,
intuitively, by taking max{dist(u,w),dist(y, z)}, we can well-approximate diam(P ) no matter whether ∠pxq
is small or large. We formally state this as follows.

Corollary 3 Let v, u, w, x be the points defined in Lemma 2. Also, let y ∈ ΦP (x) and z ∈ ΦP (y) be any two
points. Then we have

diam(P )

2
√

2/
√

3
≤ max{dist(u,w),dist(y, z)} ≤ diam(P ).

Proof. It is clear that max{dist(u,w),dist(y, z)} ≤ diam(P ), because u,w, y, z ∈ P . Let p, q ∈ P be two
points such that dist(p, q) = diam(P ). Set θ = ∠pxq. If θ ≤ π/2, then Lemma 2 implies dist(u,w) ≥
diam(P )/(

√
3/
√

2). So assume θ > π/2. By Lemma 1, we have

dist(y, z) ≥ diam(P )

2 sin(π/2− θ/4)
=

diam(P )

2 cos(θ/4)
.

Also, by Lemma 2, we have dist(u,w) ≥ diam(P )/(
√

3 sin(θ/2)). Therefore,

max{dist(u,w),dist(y, z)} ≥ diam(P )

min{2 cos(θ/4),
√

3 sin(θ/2)}
.

Note that for θ ∈ (π/2, π], 2 cos(θ/4) is monotonically decreasing and
√

3 sin(θ/2) is monotonically increasing.
Thus, the right side of the above inequality is minimized when 2 cos(θ/4) =

√
3 sin(θ/2). We have this equality

when sin(θ/4) = 1/
√

3, because sin(θ/2) = 2 sin(θ/4) cos(θ/4). By some direct calculations, we obtain the
inequality in the corollary. �

With the five points v, u, w, y, z (which are in fact the vertices of P ) in hand, Corollary 3 allows us to
approximate diam(P ) within a factor of 2

√
2/
√

3 ≈ 1.633. In other words, the diameter information of
P is well “encoded” in those five vertices. However, the choice of v, u, w, y, z is not unique in our above
construction. For later use, we need to make it unique, which can be easily done by considering ≺-order (see
Sec. 1.3). We define v ∈ V as the largest vertex of P under ≺-order. Also, we require u ∈ ΦP (v), w ∈ ΦP (u),
y ∈ ΦP (x), z ∈ ΦP (y) to be the largest under ≺-order. In this way, we obtain a uniquely defined 5-tuple
(v, u, w, y, z) for the polytope P . We call this 5-tuple the witness sequence of P , denoted by wit(P ). For
a 5-tuple ψ = (x1, . . . , x5) of points in Rd, define Λ(ψ) = max{dist(x2, x3),dist(x4, x5)}. Then Corollary 3
implies

diam(P )

2
√

2/
√

3
≤ Λ(wit(P )) ≤ diam(P ) (3)

for any convex polytope P in Rd.

2.2 An (n, d)-polynomial-time approximation algorithm

In this section, we use the notion of witness sequence defined above to establish our approximation algorithm
for computing diamS . Given the stochastic dataset S = (S, π), we first do a preprocessing to sort all the
points in S in ≺-order and compute the pair-wise distances of the points in S. This preprocessing can be
done in O(dn2) time. Now we consider how to approximate diamS . We define

diam∗S =
∑
R⊆S

Pr[R] · Λ(wit(CH(R))).

Inequality 3 implies diamS/(2
√

2/
√

3) ≤ diam∗S ≤ diamS . Thus, in order to achieve a 1.633-approximation
diamS , it suffices to compute diam∗S . Computing diam∗S by directly using the above formula takes exponential
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time, as S has 2n subsets. However, since for any R ⊆ S the witness sequence wit(CH(R)) must be a 5-tuple
of points in S, we can also write diam∗S as

diam∗S =
∑
ψ∈ΨS

Pr[ψ] · Λ(ψ), (4)

where ΨS is the set of all 5-tuples of points in S and Pr[ψ] is the probability that the witness sequence of a
SCH of S is ψ. Note that |ΨS | = O(n5). Thus, we can efficiently compute diam∗S as long as Pr[ψ] and Λ(ψ)
can be computed efficiently for every ψ ∈ ΨS . Clearly, Λ(ψ) can be directly computed in constant time (after
our preprocessing). To compute Pr[ψ], suppose ψ = (p1, . . . , p5) ∈ ΨS . It is easy to check that if p1 = p2,
then either Pr[ψ] = 0 or Λ(ψ) = 0. So we may assume p1 6= p2. In this case, we give the following criterion
for checking if ψ is the witness sequence of a SCH of S. For three points a, b, c ∈ Rd, we write a ≺b c if
dist(a, b) < dist(c, b), or dist(a, b) = dist(c, b) and a ≺ c.

Lemma 4 Let ψ = (p1, . . . , p5) ∈ ΨS with p1 6= p2. Suppose r is the ray with initial point p2 which goes
through p1, and x is the point on r which has distance dist(p2, p3)/2 from p2. For a realization R of S, we
have ψ = wit(CH(R)) iff the following two conditions hold.
(1) R contains p1, . . . , p5.
(2) R does not contain any point a ∈ S satisfying p1 ≺ a or p2 ≺p1 a or p3 ≺p2 a or p4 ≺x a or p5 ≺p4 a.

Proof. Let R be a realization of S, and set C = CH(R). The proof of the lemma is somehow straightforward
by using the definition of witness sequence. To see the “if” part, assume the two conditions in the lemma
hold. Then p1 must be the largest point in R under ≺-order, which must be a vertex of C. Furthermore,
p2, p3, p4, p5 must be the largest points in ΦC(p1),ΦC(p2),ΦC(x),ΦC(p4) under ≺-order, respectively. Thus,
by definition, ψ = (p1, . . . , p5) = wit(C). To see the “only if” part, assume wit(C) = ψ. Then p1, . . . , p5

are vertices of C and must be contained in R, which implies (1). By definition, p1 is the largest vertex of
C under ≺-order, and p2, p3, p4, p5 are the largest points in ΦC(p1),ΦC(p2),ΦC(x),ΦC(p4) under ≺-order
respectively, which implies (2). �

By Lemma 4, it is quite easy to compute Pr[ψ] in linear time, just by multiplying the existence probabilities
of the points in ψ and the non-existence probabilities of all the points which should not be included in
R (according to the condition (2) in the lemma). Using Equation 6, we obtain an (n, d)-polynomial-time
algorithm to compute diam∗S . This algorithm runs in O(n6 + dn2) time. But we can easily improve the
runtime to O(n5 log n+ dn2); see Appendix C.

Theorem 5 One can achieve a 1.633-approximation of diamS in (n, d)-polynomial time. Specifically, the
approximation can be done in O(n5 log n+ dn2) time.

Interestingly, our witness-sequence technique also gives an O(dn)-time 1.633-approximation algorithm
for computing the diameter of the convex hull of a (non-stochastic) point-set S in Rd, because wit(CH(S))
can be computed in O(dn) time. To our best knowledge, there has not been any linear-time algorithm which
can achieve such an approximation factor when d is not fixed.

3 Approximating the expected width

Let S = (S, π) be a stochastic dataset in Rd with d fixed, and suppose |S| = n. Our goal in this section is
to (approximately) compute the expected width of a SCH of S, defined as

widS =
∑
R⊆S

Pr[R] · wid(CH(R)),

where Pr[R] denotes the probability that R occurs as a realization of S.
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3.1 The witness simplex

Recall that when solving the expected-diameter problem, we developed the notion of witness sequence, which
well-captures the diameter of a polytope and satisfies (1) the total number of the possible witness sequences
of a SCH is polynomial (though there are exponentially many realizations), (2) the probability of a sequence
being the witness sequence of a SCH can be easily computed. We apply this basic idea again to the expected-
width problem. To this end, we have to design some good “witness object” for width, which satisfies the
above two conditions. The witness object to be defined is called witness simplex.

Let P be a convex polytope in Rd with wid(P ) > 0, and V be the vertex set of P . We choose d + 1
vertices v0, . . . , vd ∈ V of P inductively as follows. Define v0 ∈ V as the largest vertex of P under ≺-order.
Suppose v0, . . . , vi are already defined. Let Ei be the (unique) i-dim hyperplane in Rd through v0, . . . , vi (or
the i-dim linear subspace of Rd spanned by v0, . . . , vi). We then define vi+1 ∈ V as the vertex of P which
has the maximum distance to Ei, i.e., vi+1 = arg maxv∈V dist(v,Ei). If there exist multiple vertices having
maximum distance to Ei, we choose the largest one under ≺-order to be vi+1. In this way, we obtain the
vertices v0, . . . , vd. The witness simplex ∆P of P is defined as the d-simplex with vertices v0, . . . , vd. The
(ordered) sequence (v0, . . . , vd) is said to be the vertex list of ∆P . Note that the vertex list is determined by
only ∆P and independent of P . In other words, if we only know ∆P without knowing the original polytope
P , we can still recover the vertex list of ∆P , just by ordering the d + 1 vertices of ∆P into a sequence
(v0, . . . , vd) such that v0 is the largest under ≺-order, and each vi+1 is the one having the maximum distance
to Ei (the linear subspace spanned by v0, . . . , vi). A useful geometric property of the witness simplex ∆P is
that it well-captures the width of P .

Lemma 6 Let P be a convex polytope in Rd with wid(P ) > 0, then we have wid(∆P ) = Θ(wid(P )). The
constant hidden in Θ(·) could be exponential in d.

Proof. Note that wid(∆P ) ≤ wid(P ) since ∆P ⊆ P . It suffices to show that wid(∆P ) = Ω(wid(P )).
Let (v0, . . . , vd) be the vertex list of ∆P . Also, let Ei be the i-dim hyperplane in Rd through v0, . . . , vi.
Suppose each vi has the coordinates vi = (yi,1, . . . , yi,d). Without loss of generality, we may assume that
yi,j = 0 for j > i, that is, v0 = (0, . . . , 0), v1 = (y1,1, 0, . . . , 0), v2 = (y2,1, y2,2, 0, . . . , 0), and so forth (if
this is not the case, one can properly apply an isometric transformation on Rd to make it true). With
this assumption, Ei is nothing but the i-dim linear subspace of Rd spanned by the axes x1, . . . , xi. Note
that |yi,i| = dist(vi, Ei−1) ≥ dist(vi+1, Ei−1) ≥ |yi+1,i+1|. Therefore, |y1,1| ≥ · · · ≥ |yd,d|. Furthermore,
let v ∈ V be any vertex of P with coordinates v = (z1, . . . , zd). For every i ∈ {1, . . . , d}, we have that
dist(vi, Ei−1) ≥ dist(v,Ei−1) ≥ |zi|, which implies −|yi,i| ≤ zi ≤ |yi,i|. Based on this observation, we now
show that wid(∆P ) ≥ c · wid(P ) for some constant c. It suffices to show that there exists a constant c
such that widu(∆P ) ≥ c · wid(P ) for any unit vector u ∈ Rd. We use induction to achieve this. First, for
u = (0, . . . , 0, 1), we have

widu(∆P ) = |yd,d| ≥ widu(P )/2 ≥ wid(P )/2,

because the d-th coordinate of any v ∈ V has absolute value at most |yd,d|. It follows that widu(∆P ) ≥
cd · wid(P ) for a constant cd = 1/2. Using this as a base case, we may assume that there exists a constant
ci+1 ∈ (0, 1) such that widu(∆P ) ≥ ci+1 ·wid(P ) for any unit vector u ∈ Rd whose first i coordinates are all
0. Our goal is to find a new constant ci ∈ (0, 1) such that widu(∆P ) ≥ ci ·wid(P ) for any unit vector u ∈ Rd
whose first i − 1 coordinates are all 0. Let u = (0, . . . , 0, ui, . . . , ud) ∈ Rd be such a unit vector, and define
u′ = (0, . . . , 0, u′i+1, . . . , u

′
d) ∈ Rd as a unit vector where u′j = uj/

√
1− u2

i for j ∈ {i + 1, . . . , d}. We may
assume ui ≥ 0 because widu(∆P ) = wid−u(∆P ). Set ci = ci+1/5. We verify that widu(∆P ) ≥ ci · wid(P )
by considering two cases, ui|yi,i| ≥ ci · wid(P ) and ui|yi,i| < ci · wid(P ). In the case of ui|yi,i| ≥ ci · wid(P ),
we immediately have

widu(∆P ) ≥ |〈u, vi〉 − 〈u, vi−1〉| = ui|yi,i| ≥ ci · wid(P ).

In the case of ui|yi,i| < ci · wid(P ), we consider the unit vector u′ defined above. Let α, β ∈ {0, . . . , d} be
indices such that widu′(∆P ) = 〈u′, vα〉 − 〈u′, vβ〉. We claim that 〈u, vα〉 − 〈u, vβ〉 ≥ ci ·wid(P ). First, since
the i-th coordinates of vα and vβ have absolute values at most |yi,i| (as observed before), we have
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〈u, vα〉 − 〈u, vβ〉 ≥
√

1− u2
i · widu′(∆P )− 2ui|yi,i|.

We have ui|yi,i| < ci · wid(P ) = (ci+1/5) · wid(P ) by assumption and widu′(∆P ) ≥ ci+1 · wid(P ) by the

induction hypothesis, hence 〈u, vα〉 − 〈u, vβ〉 ≥ (
√

1− u2
i − 2/5) · ci+1 · wid(P ). It is sufficient to show

that
√

1− u2
i ≥ 3/5. Note that |yi,i| ≥ widw(P )/2 ≥ wid(P )/2, where w is the unit vector whose i-th

coordinate is 1 and other coordinates are 0. By applying this to the inequality ui|yi,i| < ci ·wid(P ), we have

ui < 2ci = (2/5) · ci+1 ≤ 2/5. Therefore,
√

1− u2
i ≥ 1−ui ≥ 3/5, as we desire. In both of the cases, we have

〈u, vα〉 − 〈u, vβ〉 ≥ ci · wid(P ). Since widu(∆P ) ≥ 〈u, vα〉 − 〈u, vβ〉, it holds that widu(∆P ) ≥ ci · wid(P ).
We can use this induction argument to finally obtain the constant c1 (note that c1 is truly a constant as d is
fixed), which satisfies widu(∆P ) ≥ c1 ·wid(P ) for any unit vector u ∈ Rd. As a result, wid(∆P ) ≥ c1 ·wid(P ),
completing the proof. �

3.2 An O(1)-approximation algorithm

With the notion of witness simplex in hand, we propose a O(1)-approximation algorithm for computing
widS . The basic idea is similar to what we use for approximating diamS . We define

wid∗S =
∑
R⊆S

Pr[R] · wid(∆CH(R)),

Lemma 6 implies wid∗S = Θ(widS). Thus, in order to approximate widS within a constant factor, it suffices
to compute wid∗S . To compute wid∗S by directly using the above formula takes exponential time, as S has
2n subsets. However, since ∆CH(R) must be a d-simplex with vertices in S, wid∗S can also be written as

wid∗S =
∑

∆∈Γd
S

Pr[∆] · wid(∆), (5)

where Γ dS is the set of all d-simplices in Rd whose vertices are (distinct) points in S and Pr[∆] is the
probability that the witness simplex of a SCH of S is ∆. Note that |Γ dS | = O(nd+1), which is polynomial. So
the above formula allows us to compute wid∗S in polynomial time, as long as we are able to compute Pr[∆]
efficiently for each ∆ ∈ Γ dS . Fixing ∆ ∈ Γ dS , we now investigate how to compute Pr[∆]. As argued before,
we can recover the vertex list (v0, . . . , vd) of ∆. By the construction of ∆, v0, . . . , vd are points in S. For
i ∈ {0, . . . , d − 1}, we denote by Ei the i-dim hyperplane in Rd through v0, . . . , vi. We give the following
criterion for checking if ∆ is the witness simplex of a SCH of S. For a hyperplane H (of any dimension) in
Rd and two points a, b ∈ Rd, we write a ≺H b if dist(a,H) < dist(b,H), or dist(a,H) = dist(b,H) and a ≺ b.

Lemma 7 For a realization R of S, ∆ is the witness simplex of CH(R) (i.e., ∆ = ∆CH(R)) iff the following
two conditions hold.
(1) R contains v0, . . . , vd.
(2) R does not contain any point a ∈ S satisfying v0 ≺ a or vi+1 ≺Ei

a for some i ∈ {0, . . . , d− 1}.

Proof. Let R be a realization of S, and set C = CH(R). The proof of the lemma is somehow straightforward
by using the definition of witness simplex. To see the “if” part, assume the two conditions in the lemma
hold. Then v0 must be the largest point in R under ≺-order, which must be a vertex of C. Furthermore,
vi+1 must be a vertex of C (for it is the farthest from Ei and the points in S are in general position) which
has the maximum distance to Ei (in addition, if there exists another vertex v of C having the same distance
to Ei as vi+1, then v ≺ vi+1). Thus, by definition, ∆ = ∆C . To see the “only if” part, assume ∆ = ∆C .
Then v0, . . . , vd are vertices of C and must be contained in R, which implies (1). Since (v0, . . . , vd) is the
vertex list of ∆, v0 is the largest vertex of C under ≺-order. Also, for any i ∈ {0, . . . , d− 1}, vi+1 is a vertex
of C which has the maximum distance to Ei (in addition, if there exists another vertex v of C having the
same distance to Ei as vi+1, then v ≺ vi+1), so R cannot contain any point a with vi+1 ≺Ei

a. So we have
the condition (2). �
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Using the above lemma, we can straightforwardly compute Pr[∆] in linear time, just by multiplying the
existence probabilities of v0, . . . , vd and the non-existence probabilities of all a ∈ S which should not be
included in R (according to the condition (2) in the lemma). Therefore, we obtain an O(nd+2)-time algorithm
for computing wid∗S . It is easy to improve the runtime to O(nd+1 log n); see Appendix D.

Theorem 8 One can O(1)-approximate widS in O(nd+1 log n) time. The constant approximation factor
could be exponential in d.

3.3 A fully polynomial-time randomized approximation scheme

In this section, we develop a fully polynomial-time randomized approximation scheme (FPRAS) for comput-
ing widS . An FPRAS should take S and a real number ε > 0 as input, and output a (1 + ε) approximation
of widS in time polynomial in the size of S and 1/ε with probability at least 2/3.

We first introduce some notations. As defined in the preceding section, Γ dS is the set of all d-simplices in
Rd whose vertices are (distinct) points in S, and for each ∆ ∈ Γ dS the notation Pr[∆] denotes the probability
that the witness simplex of a SCH of S is ∆. Let R be a realization of S and ∆ ∈ Γ dS be a simplex. From
Lemma 7, we know that ∆ = ∆CH(R) iff R contains the vertices of ∆ but does not contain some other points
in S according to (2) in the lemma. We now use V∆ to denote the set of the vertices of ∆, X∆ to denote
the set of the points in S that R must not contain if ∆ = ∆CH(R). Let F∆ = S\(V∆ ∪ X∆), which is the
set of the points in S whose presence/absence in R does not influence whether ∆ = ∆CH(R). Define F∆

as the sub-dataset of S with the point-set F∆. Our FPRAS works as follows. First, for each ∆ ∈ Γ dS , we
randomly generate m = γ log n/ε2 realizations of F∆, where γ is a large enough constant to be determined.
Let R∆

1 , . . . , R
∆
m be the generated realizations of F∆, and set T∆

i = R∆
i ∪V∆. Note that the witness simplex

of CH(T∆
i ) is ∆ by Lemma 7. We then compute

wid′S =
∑

∆∈Γd
S

Pr[∆] ·

(
m∑
i=1

wid(CH(T∆
i ))

m

)
, (6)

and output wid′S as the approximation of widS .
Next, we discuss the choice of the constant γ and verify the correctness of our FPRAS. By Lemma 6, we

can find positive constants k1, k2 such that k1 · wid(∆P ) ≤ wid(P ) ≤ k2 · wid(∆P ) for any convex polytope
P in Rd with wid(P ) > 0. We set γ = d(k2/k1)2. With this choice of γ, we claim the following, which shows
the correctness of our FPRAS.

Lemma 9 (1− ε)widS ≤ wid′S ≤ (1 + ε)widS with probability at least 2/3.

Proof. Indeed, we can write

widS =
∑

∆∈Γd
S

Pr[∆] ·E∆,

where E∆ is the conditional expected width of a SCH of S under the condition that the witness simplex of
the SCH is ∆. Since wid′S is computed using Equation 6, it suffices to show that

(1− ε)E∆ ≤
m∑
i=1

wid(CH(T∆
i ))

m
≤ (1 + ε)E∆ (7)

for all ∆ ∈ Γ dS with probability at least 2/3. Fixing ∆ ∈ Γ dS , we can regard wid(CH(T∆
1 )), . . . ,wid(CH(T∆

m ))
as i.i.d. random variables. By Lemma 7 and the construction of each T∆

i , we know that the expectation of
wid(CH(T∆

i )) is E∆. Furthermore, we have k1 · wid(∆) ≤ wid(CH(T∆
i )) ≤ k2 · wid(∆), since the witness

simplex of CH(T∆
i ) is ∆ as argued before. Based on these observations, we can apply Hoeffding’s inequality

to obtain
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Pr

[ ∣∣∣∣∣
m∑
i=1

wid(CH(T∆
i ))

m
−E∆

∣∣∣∣∣ ≥ εE∆

]
≤ 2 exp

(
− 2m · (εE∆)2

(k2 − k1)2 · wid(∆)2

)
.

Note that m = γ log n/ε2 = d(k2/k1)2 log n/ε2. Therefore,

− 2m · (εE∆)2

(k2 − k1)2 · wid(∆)2
≤ −2d log n,

since E∆ ≥ k1 ·wid(∆). It follows that Equation 7 fails with probability O(n−2d) for a specific ∆. Therefore,
by union bound, Equation 7 holds for all ∆ ∈ Γ dS with probability 1−O(n−d+1), which is greater than 2/3
for large n (assume d ≥ 2). As a result, the inequality in the theorem is proved. �

Theorem 10 There exists an FPRAS for computing widS .

4 Computing the expected combinatorial complexity

Let S = (S, π) be a stochastic dataset in Rd with d fixed, and suppose |S| = n. Our goal in this section is
to compute the expected complexity of a SCH of S, defined as

compS =
∑
R⊆S

Pr[R] · |CH(R)|,

where Pr[R] denotes the probability that R occurs as a realization of S.

4.1 Reduction to SCH membership probability queries

Given a stochastic dataset T in Rd and a query point q ∈ Rd, the SCH membership probability (of q with
respect to T ) refers to the probability that q lies in a SCH of T , which we denote by memT (q). It is known
that memT (q) can be computed in O(md−1) time for d ≥ 3 [6, 19] and O(m logm) time for d ∈ {1, 2} [3],
where m is the number of the stochastic points in T .

In this section, we reduce our problem of computing compS to SCH membership probability queries. Let
R be a realization of S. It is clear that the faces of CH(R) must be simplices with vertices in S. Therefore,
we can rewrite the formula for compS as

compS =
∑
R⊆S

Pr[R] ·

( ∑
∆∈ΓS

σ(R,∆)

)
=
∑

∆∈ΓS

F∆, (8)

where ΓS is the set of all simplices (of dimension less than d) with vertices in S, σ is a indicating function
such that σ(R,∆) = 1 if ∆ is a face of CH(R) and σ(R,∆) = 0 otherwise, F∆ is the probability that ∆ is a
face of a SCH of S. We now show that for each ∆ ∈ ΓS , the computation of F∆ can be reduced to a SCH
membership probability query. Suppose Y is a set of m (m ≥ d + 1) points in Rd in general position. Let
y0, . . . , yk ∈ Y be k + 1 points where 0 ≤ k ≤ d− 1, and ∆ be the k-simplex with vertices y0, . . . , yk. Define
vectors ui = yi − y0 for i ∈ {1, . . . , k}. By the general position assumption, u1, . . . ,uk generate a k-dim
linear subspace H of Rd. Set H∗ to be the orthogonal complement of H in Rd, which is by definition the
(d − k)-dim linear subspace of Rd orthogonal to H. We then orthogonally project the points in Y to H∗,
and denote the set of the projection images by Y ∗. Note that y0, . . . , yk are clearly projected to the same
point in H∗, which we denote by ŷ. We have the following observation.

Lemma 11 ∆ is a face of CH(Y ) iff ŷ is a vertex of CH(Y ∗) in H∗.

Proof. Suppose Y = {y0, y1, . . . , ym}, and let P = CH(Y ), P ∗ = CH(Y ∗). Then any point x ∈ P can be
represented as a linear combination x =

∑m
i=0 wi · yi where wi ≥ 0 and

∑m
i=0 wi = 1, which we call convex

representation. It is easy to check that x is on the boundary of P iff x has a unique convex representation
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and in which there are at most d nonzero wi’s. We first show the “if” part. Assume ∆ is not a face of
CH(Y ). Then there must exist x ∈ ∆ which is not on the boundary of P . Since ∆ is a simplex, there is a
unique convex representation of x satisfying wi = 0 for all i > k. But this should not be the only convex
representation of x, because x is not on the boundary of P . Therefore, x has another convex representation
with wi > 0 for some i > k (without loss of generality, assume wm > 0). Let ρ : Rd → H∗ be the orthogonal
projection map. We have

ŷ = ρ(x) = ρ

(
m∑
i=0

wi · yi

)
=

m∑
i=0

wi · ρ(yi).

Note that all ρ(yi) are points in P ∗. Furthermore, by general position assumption, ρ(ym) 6= ŷ. Therefore,
ŷ is not a vertex of P ∗. Next, we consider the “only if” part. Assume ŷ is not a vertex of P ∗. Then
we have P ∗ = CH(Y ∗\{ŷ}). It follows that ŷ has an convex representation ŷ =

∑m
i=0 wi · ρ(yi) with

w0 = · · · = wk = 0. Lifting this representation, we obtain a point x =
∑m
i=0 wi · yi ∈ P . Since ρ(x) = ŷ, x is

in the k-dim hyperplane L spanned by y0, . . . , yk. Now assume ∆ is a face of P , so we must have L∩P = ∆,
which implies x ∈ ∆. This means that x has an convex representation with wk+1 = · · · = wm = 0. Since
x has two different convex representations, it is not on the boundary of P , contradicting that x ∈ ∆. As a
result, ∆ is not a face of P . �

By the above lemma, we can reduce the computation of F∆ for any ∆ ∈ ΓS to a SCH membership query
as follows. For each i ∈ {0, . . . , d − 1}, let Γ iS ⊆ ΓS be the subset consisting of all i-simplices in ΓS (then

ΓS =
⋃d−1
i=0 Γ

i
S). Suppose ∆ ∈ Γ kS is a k-simplex with vertices v0, . . . , vk ∈ S. As before, we define vectors

ui = vi − v0 for i ∈ {1, . . . , k}. Then u1, . . . ,uk generate a k-dim linear subspace H of Rd, and set H∗ to
be the orthogonal complement of H in Rd. Let ρ : Rd → H∗ be the orthogonal projection map. We define
a multi-set S′ = {ρ(a) : a ∈ S\{v0, . . . , vk}} of points in H∗, which in turn gives us a stochastic dataset
S ′ = (S′, π′) in H∗ where π′(ρ(a)) = π(a). Set q = ρ(v0) = · · · = ρ(vk).

Corollary 12 F∆ =
∏k
i=0 π(vi) · (1−memS′(q)).

Proof. Let R be a realization of S. If ∆ is a face of CH(R), then v0, . . . , vk must be contained in R.
Furthermore, by Lemma 11, q must be a vertex of the projection image of CH(R) in H∗. By the general
position assumption, this is equivalent to saying that q is outside the projection image of CH(R\{v0, . . . , vk}).
Conversely, if v0, . . . , vk are contained in R and q is outside the projection image of CH(R\{v0, . . . , vk}),
then ∆ is a face of CH(R) by Lemma 11. The probability that R contains v0, . . . , vk is

∏k
i=0 π(vi), and the

probability that q is outside the projection image of CH(R\{v0, . . . , vk}) is 1−memS′(q). These two events
are clearly independent. Therefore, we have the formula in the corollary. �

Since H∗ is linearly homeomorphic to Rd−k, computing memS′(q) is nothing but answering a SCH
membership probability query in Rd−k. Therefore, using the algorithms for answering SCH membership
probability queries [6, 19], F∆ can be computed in O(nd−k−1) time if k ∈ {0, . . . , d − 3}. Note that |Γ kS | =
O(nk+1), so we can compute the sum

∑d−3
i=0

∑
∆∈Γ i

S
F∆ in O(nd) time. In order to further compute compS

by Equation 8, we now only need to compute
∑

∆∈Γd−2
S

F∆ and
∑

∆∈Γd−1
S

F∆. Answering SCH membership

probability queries in R1 and R2 requires O(m logm) time [3] (where m is the size of the given stochastic
dataset). Thus, if we use the algorithm in [3] to calculate SCH membership probabilities, our computation
task cannot be done in O(nd) time. The next section discusses how to handle this issue.

4.2 Handling k = d− 2 and k = d− 1

Set λ1 =
∑

∆∈Γd−1
S

F∆ and λ2 =
∑

∆∈Γd−2
S

F∆. For simplicity of exposition, we first fix a point o ∈ Rd such

that S ∪ {o} is in general position. For every hyperplane E with o /∈ E, we denote by E+ the connected
component of Rd\E containing o, and by E− the other one. Define the S-statistic of E as a 3-tuple
statS(E) = (p+, p−, A) where p+ =

∏
a∈S∩E+(1 − π(a)), p− =

∏
a∈S∩E−(1 − π(a)), A = S ∩ E. Let E be

the collection of the hyperplanes in Rd which go through exactly d points in S. Since S ∪ {o} is in general
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position, stat(E) is defined for every E ∈ E . We say an algorithm computes the S-statistics for E if it reports
statS(E) for all E ∈ E in an arbitrary order (without repetition).

Lemma 13 If there exists an algorithm computing the S-statistics for E in O(t(n)) time and O(s(n)) space,
then one can compute λ1 and λ2 in O(t(n)) time and O(s(n)) space.

Proof. We first consider the computation of λ1. Let ∆ ∈ Γ d−1
S and E ∈ E be the hyperplane through the d

vertices of ∆. Suppose q and S ′ are the point and the stochastic dataset defined in Corollary 12 for computing
F∆. Since memS′(q) is a SCH membership query in R1, it is clear that 1−memS′(q) = p+ + p− − p+p− if
stat(E) = (p+, p−, A). Hence F∆ can be computed from statS(E) in constant time. Consider the algorithm
provided for computing the S-statistics for E . At every time it reports some statS(E) = (p+, p−, A), we use
it to compute the corresponding F∆ (note that ∆ can be recovered from A) in constant time. By summing
up all F∆, we obtain λ1, which is done in O(t(n)) time and O(s(n)) space. To consider λ2, we need a
careful analysis of the witness-edge method in [3] for computing SCH membership probability in R2. Let
T = (T, τ) be a stochastic dataset in R2, and q ∈ R2 be a query point. The witness-edge method computes
1−memT (q) as a summation of which the summands one-to-one correspond to the hyperplanes (i.e., lines)
which go through q and one point in T . Furthermore, the summand corresponding to a hyperplane E can
be computed from statT (E) in constant time. See [3] for the details. Now we consider the computation
of λ2. Let ∆ ∈ Γ d−2

S . Suppose q and S ′ are the point and the stochastic dataset defined in Corollary 12
for computing F∆. We can regard (S ′, q) as a SCH membership probability query in R2. Thus, by our
observation about the witness-edge method and Corollary 12, F∆ can be expressed as a summation with
summands one-to-one corresponding to the lines through q and one point in the point-set of S ′ (we denote
by L the collection of these lines). Note that there is also an one-to-one correspondence between L and a
sub-collection E∆ ⊂ E containing the hyperplanes through all the d−1 vertices of ∆. Moreover, statS′(L) for
L ∈ L can be recovered from statS(E) for E ∈ E∆ corresponding to L in constant time. Therefore, we may
charge each summand of F∆ to the corresponding hyperplane E ∈ E∆. Now consider the algorithm provided
for computing the S-statistics for E . At every time it reports statS(E) for some E ∈ E , we use it to compute
all summands charged to E. Note that each E ∈ E belongs to exactly d− 1 E∆’s, and hence is charged with
exactly d − 1 summands. Therefore, this computation can be done in constant time. By summing up all
summands charged to all E ∈ E , we finally obtain λ2, which is done in O(t(n)) time and O(s(n)) space. �

By the above lemma, it is now sufficient to establish a good algorithm computing the S-statistics for
E . We give in Appendix E an algorithm computing the S-statistics for E in O(nd) time and O(n) space
(the basic idea is implicitly known in [6, 19]). With this algorithm in hand, Lemma 13 implies that we can
compute λ1 and λ2 in O(nd) time and O(n) space. By further combining this with what we have in the
previous section, we can finally conclude the following.

Theorem 14 One can compute the exact value of compS in O(nd) time.
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Appendix

A A simple 2-approximation of diamS

We describe a very simple (n, d)-polynomial-time 2-approximation of diamS , i.e., the expected diameter of a
SCH of S (see Sec. 1.3 and the beginning of Sec. 2 for the formal definition of diamS). Given a set of points
in Rd, the diameter of their convex hull is just the distance between the farthest-pair of points (farthest-pair
distance hereafter). Therefore, it suffices to approximate the expected farthest-pair distance of S. Recall
the following well-known fact.

Fact 1 For a set X of points in a metric space and any x ∈ X, the farthest-pair distance of X is at most
2dist(x, y), where y ∈ X is the point farthest from x.

Proof. Assume the farthest-pair distance of X is dist(p, q) for some p, q ∈ X. Then 2dist(x, y) ≥ dist(x, p) +
dist(x, q) ≥ dist(p, q). �

By using the above fact, it is straightforward to obtain a 2-approximation algorithm for computing the
expected farthest-pair distance of S. Suppose S = (S, π) with S = {a1, . . . , an}. If R ⊆ S is a realization of
S, we consider the point in R with the smallest index, say ai, and the point in R that is farthest from ai,
say aj (assume the points in S have distinct distances from ai). Then dist(ai, aj) is a 2-approximation of the
farthest-pair distance of R. We call (ai, aj) the critical pair of R. Define Ei,j as the event that a realization
R of S has critical pair (ai, aj). An 2-approximation of diamS can be simply computed as

diam∗S =

n∑
i=1

n∑
j=1

Pr[Ei,j ] · dist(ai, aj).

Note that Pr[Ei,j ] = π(ai) · π(aj) ·
∏
k∈Ii,j (1 − π(ak)) where Ii,j = {k : k < i or dist(ai, aj) < dist(ai, ak)}.

Therefore, a 2-approximation of diamS can be computed in (n, d)-polynomial-time. (More generally, one can
compute a 2-approximation of the expected farthest-pair distance in any metric space in polynomial time,
as long as the distance function can be computed in polynomial time.)

B #P-hardness of the expected-diameter problem

We prove the #P-hardness of computing diamS when the dimension d is not assumed to be fixed (see
Sec. 2 for the definition of diamS). This extends a result in [7] which states that computing the expected
farthest-pair distance of a stochastic dataset in a (general) metric space is #P-hard.

Our reduction is from the problem of counting independent sets of a graph, which is a well-known #P-hard
problem.

Lemma 15 For an integer k > 0, there exists two positive real numbers αk, βk with αk < βk and a map
f : {0, 1, . . . , k, k + 1} → Rk such that dist(f(i), f(j)) = αk for any i 6= j except dist(f(k), f(k + 1)) =
dist(f(k + 1), f(k)) = βk.

Proof. Let ∆ be a regular k-simplex (i.e., a k-simplex with edges of length 1) with vertices v0, . . . , vk,
∆′ be another regular k-simplex with vertices v′0, . . . , v

′
k. We form a regular double-simplex by identically

gluing the face (v0, . . . , vk−1) of ∆ with the face (v′0, . . . , v
′
k−1) of ∆′ (see Figure 3). Clearly, this double-

simplex can be (isometrically) embedded into Rk via an embedding map σ. Now we define f(k) = σ(vk),
f(k + 1) = σ(v′k), and f(i) = σ(vi) = σ(v′i) for all i ∈ {0, . . . , k − 1}. By taking αk = dist(f(0), f(1)) and
βk = dist(f(k), f(k + 1)), we complete the proof (the desired properties of αk, βk, f can be easily verified).
�
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Figure 3: A regular double-simplex

Lemma 16 For a graph G = (V,E), one can compute in polynomial time map f : V → R|V |−1 such that

dist(f(u), f(v)) =

{
α if (u, v) /∈ E,
β if (u, v) ∈ E,

for some α, β with α < β.

Proof. Suppose V = {v1, . . . , vn} and E = {e1, . . . , em}. Using Lemma 15, we find the real numbers
αn−2, βn−2. For each e ∈ E, let ge : V → Rn−2 be a map such that

dist(ge(u), ge(v)) =

{
αn−2 if e 6= (u, v),
βn−2 if e = (u, v).

Note that ge exists by Lemma 15. We then define g : V → (Rn−2)m by setting g(v) = (ge1(v), . . . , gem(v)).
Let α =

√
m · αn−2 and β =

√
(m− 1)αn−2 + βn−2. It is easy to check that α < β and

dist(g(u), g(v)) =

{
α if (u, v) /∈ E,
β if (u, v) ∈ E.

To further construct f , we note that the image of g consists only n points, which should span a (n− 1)-dim
hyperplane in (Rn−2)m. If we (isometrically) identify this hyperplane with Rn−1 and use h : (Rn−2)m →
Rn−1 to denote the projection map, f : V → Rn−1 is constructed as the composition h ◦ g. �

With the above result in hand, we can now describe the reduction. Given a graph G = (V,E) with
V = {v1, . . . , vn}, we first use Lemma 16 to compute the function f : V → Rn−1 and obtain α, β. Let S be
the n points in the image of f . We construct a stochastic dataset S = (S, π) by defining π : S → (0, 1] as
π(a) = 0.5 for all a ∈ S. Now the subsets of V are one-to-one corresponding to the realizations of S. By the
construction of f , it is clear that a realization R ⊆ S has a diameter diam(R) = α if R corresponds to an
independent set of G, and has a diameter diam(R) = β otherwise. Furthermore, every subset of S occurs as
a realization with an equal probability 2−n. Hence, we immediately obtain the equation

diamS = β + 2−nInd(G) · (α− β),

where Ind(G) is the number of the independent sets of G. In this way, counting the independent sets of G
is reduced to computing diamS , which implies the following hardness result.

Theorem 17 Computing diamS is #P-hard without assuming d is fixed.

C Improving the algorithm for approximating diamS

In this section, we show how to improve the runtime of our algorithm in Sec. 2.2 (see Sec. 2.2 for the notations
used). Fixing p1, p2, p3, p4 ∈ S, we show how to compute Pr[ψ] for all ψ ∈ ΨS of the form ψ = (p1, . . . , p4, ·)
in O(n log n) time. As argued before, we may assume p1 6= p2. Let r be the ray with initial point p2 which
goes through p1, and x be the point on r which has distance dist(p2, p3)/2 from p2. First, we determine a
subset A ⊆ S consisting of p4 and all the points a ∈ S satisfying p1 ≺ a or p2 ≺p1 a or p3 ≺p2 a or p4 ≺x a.
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It is clear that Pr[ψ] > 0 for ψ = (p1, . . . , p4, p) only if p ∈ S\A. For each p ∈ S\A, we denote by Bp the set
of all points b ∈ S\A with p ≺p4 b. By Lemma 4, we have

Pr[ψp] =

(
4∏
i=1

π(pi) ·
∏
a∈A

(1− π(a))

)
·

π(p) ·
∏
b∈Bp

(1− π(b))

 , (9)

where ψp = (p1, p2, p3, p4, p). Note that the left part of the above formula is independent of p and thus only
needs to be computed once. To compute the right part efficiently, suppose S\A = {c1, . . . , cr}. We relabel
these points such that c1 ≺p4 · · · ≺p4 cr. This can be done by sorting in O(n log n) time, or more precisely,
O(r log r) time. We then compute

∏r
j=i(1−π(cj)) for all i ∈ {1, . . . , r} (note that this can be done in linear

time). With this in hand, we consider each p ∈ S\A. We must have p = ci for some i ∈ {1, . . . , r}. In this
case, the right part of Equation 9 is just π(ci) ·

∏r
j=i+1(1 − π(cj)) and hence can be computed in constant

time. Therefore, we can compute Pr[ψp] for all p ∈ S\A in linear time. Including the time for sorting, this
gives us an O(n5 log n)-time 1.633-approximation algorithm for computing diamS .

D Improving the algorithm for approximating widS

In this section, we show how to improve the runtime of our algorithm in Sec. 3.2 (see Sec. 3.2 for the notations
used). We enumerate all ∆ ∈ Γ dS by considering their vertex lists. Fixing d (distinct) points v0, . . . , vd−1 ∈ S,
we show how to compute Pr[∆] for all ∆ ∈ Γ dS whose vertex lists are of the form (v0, . . . , vd−1, ·) in O(n log n)
time. First, we determine a subset V ⊆ S\{v0, . . . , vd−1} consisting of all v ∈ S\{v0, . . . , vd−1} such that
(v0, . . . , vd−1, v) is the vertex list of the d-simplex whose vertices are v0, . . . , vd−1, v. Clearly, this step can be
completed in linear time by enumerating all v ∈ S\{v0, . . . , vd−1} and verifying for each v whether v ∈ V . If
V = ∅, we are done because there is no ∆ ∈ Γ dS whose vertex list is of the form (v0, . . . , vd−1, ·). So suppose
V 6= ∅. For i ∈ {0, . . . , d− 1}, we denote by Ei be the i-dim hyperplane in Rd through v0, . . . , vi. We then
compute a subset A ⊂ S consisting of all a ∈ S such that v0 ≺ a or vi+1 ≺Ei

a for some i ∈ {0, . . . , d− 2}.
Now for any v ∈ V , we denote by Bv the set of all b ∈ S\A such that v ≺Ed−1

b. By Lemma 7, we have

Pr[∆v] =

(
d−1∏
i=0

π(vi) ·
∏
a∈A

(1− π(a))

)
·

(
π(v) ·

∏
b∈Bv

(1− π(b))

)
, (10)

where ∆v is the d-simplex with vertices v0, . . . , vd−1, v. Note that the left part of the above formula is
independent of v and thus only needs to be computed once. To compute the right part efficiently, suppose
S\A = {c1, . . . , cr}. We relabel these points such that c1 ≺Ed−1

· · · ≺Ed−1
cr. This can be done by

sorting in O(n log n) time, or more precisely, O(r log r) time. We then compute
∏r
j=i(1 − π(cj)) for all

i ∈ {1, . . . , r} (note that this can be done in linear time). With this in hand, we consider each v ∈ V . Since
V ⊆ S\A, we must have v = ci for some i ∈ {1, . . . , r}. In this case, the right part of Equation 10 is just
π(ci) ·

∏r
j=i+1(1− π(cj)) and hence can be computed in constant time. Therefore, we can compute Pr[∆v]

for all v ∈ V in linear time. Including the time for sorting, this gives us an O(nd+1 log n) time algorithm for
computing wid∗S , i.e., approximating widS within a constant factor.

E Computing the S-statistics for E
In this section, we describe an algorithm for computing the S-statistics for E in O(nd) time and O(n) space
(see Sec. 4.2 for the definition of S-statistics and E). Suppose S = {a1, . . . , an}. Then every hyperplane
E ∈ E can be uniquely represented as a d-tuple (ai1 , . . . , aid) where ai1 , . . . , aid are the points on E and
i1 < · · · < id. We first describe an algorithm using O(nd log n) time and O(n) space. Fixing d − 1 points
ai1 , . . . , aid−1

∈ S with i1 < · · · < id−1, we show how to report, in O(n log n) time and O(n) space, the
S-statistics of all hyperplanes (i.e., lines) in E which are represented as the form (ai1 , . . . , aid−1

, ·). Define Y
as the (d − 2)-dim hyperplane in Rd spanned by ai1 , . . . , aid−1

. Let Z be the (unique) vertical (d − 1)-dim
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hyperplane containing Y (by “vertical” we mean that Z is perpendicular to the hyperplane xd = 0), and
E ′ ⊆ E be the sub-collection consisting of all hyperplanes in E which contain Y . Note that |E ′| = n− d+ 1.
We then sort the hyperplanes in E ′ in the rotation order around Y , that is, we assign to each hyperplane
E ∈ E ′ a key value equal to the rotation angle from Z to E (the rotation is taken around Y with a fixed
direction), and sort the lines by their key values. Assume E1, . . . , En−d+1 is the sorted list. Observe that
stat(Ej+1) can be computed in constant time if stat(Ej) is already in hand, basically because the points on
each side of Ej+1 are almost the same as those on each side of Ej except two points. By this observation,
we may compute the S-statistics of E1, . . . , En−d+1 in O(n) time. Once stat(Ej) is computed, we report it
if Ej is represented as the form (ai1 , . . . , aid−1

, ·). In this way, we obtain an O(nd log n)-time and O(n)-space
algorithm. To shave off the log n factor in the time bound, we need to further apply the techniques of duality
and topological sweep [5]. This approach heavily relies on an idea in [6] (which was used to improve the
algorithm for computing the separability-probability), so here we only provide a sketch. Instead of fixing
d − 1 points, we fix d − 2 points ai1 , . . . , aid−2

∈ S with i1 < · · · < id−2, and want to report, in O(n2)
time and O(n) space, stat(E) for all E ∈ E which are represented as the form (ai1 , . . . , aid−2

, ·, ·). Note
that if this can be done, we immediately obtain an O(nd)-time and O(n)-space algorithm. Consider the
point-set S in the dual space of Rd. Every point ai ∈ S is dual to a (d − 1)-dim hyperplane a∗i in the dual
space. Furthermore, a (k − 1)-dim hyperplane spanned by k (distinct) points aj1 , . . . , ajk ∈ S is dual to
a (d − k)-dim hyperplane in the dual space, which is in fact the intersection of a∗j1 , . . . , a

∗
jk

. Let D be the
(d− 3)-dim hyperplane spanned by ai1 , . . . , aid−2

, which is dual to a 2-dim hyperplane (i.e., a plane) D∗ in
the dual space. For each ai ∈ S\{ai1 , . . . , aid−2

}, the intersection of a∗i and D∗ is a line in D∗ (which should
be the dual of the (d − 2)-dim hyperplane spanned by ai1 , . . . , aid−2

, ai). These n − d + 2 lines form a line
arrangement in D∗. Suppose l∗i is the line corresponding to ai. In the line arrangement, there are n− d+ 1
intersection points on l∗i , each of which is the dual of a hyperplane through ai1 , . . . , aid−2

, ai in the original
space. The order of these intersection points appearing on l∗i is just the rotation order of the corresponding
hyperplanes in the original space. Therefore, if these intersection points are already sorted, we can compute
the S-statistic of each of the corresponding hyperplanes in amortized O(1) time. But we cannot use sorting,
as it takes O(n log n) time per line and we have O(n) lines in the arrangement. Instead, we use topological
sweep to visit the intersection points in the arrangement. In the process of topological sweep, the intersection
points on each line is visited in order along the line (though not consecutively). When the first intersection
point on a line is visited, we use brute-force to compute the S-statistic of the corresponding hyperplane in
O(n) time. Then when we go to the next intersection point on the line, we can compute the S-statistic of
the corresponding hyperplane in constant time from the S-statistic of the hyperplane corresponding to the
previous intersection point. Once a S-statistic is computed, we report it if the hyperplane is represented as
the form (ai1 , . . . , aid−2

, ·, ·). The topological sweep takes O(n2) time and O(n) space. Thus, we obtain an
algorithm computing the S-statistics for E in O(nd) time and O(n) space.
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