Skip to main content

On the Expected Diameter, Width, and Complexity of a Stochastic Convex-Hull

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10389))

Included in the following conference series:

  • 1594 Accesses

Abstract

We investigate several computational problems related to the stochastic convex hull (SCH). Given a stochastic dataset consisting of n points in \(\mathbb {R}^d\) each of which has an existence probability, a SCH refers to the convex hull of a realization of the dataset, i.e., a random sample including each point with its existence probability. We are interested in computing certain expected statistics of a SCH, including diameter, width, and combinatorial complexity. For diameter, we establish the first deterministic 1.633-approximation algorithm with a time complexity polynomial in both n and d. For width, two approximation algorithms are provided: a deterministic O(1)-approximation running in \(O(n^{d+1} \log n)\) time, and a fully polynomial-time randomized approximation scheme (FPRAS). For combinatorial complexity, we propose an exact \(O(n^d)\)-time algorithm. Our solutions exploit many geometric insights in Euclidean space, some of which might be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Aronov, B., Har-Peled, S., Phillips, J.M., Yi, K., Zhang, W.: Nearest neighbor searching under uncertainty II. In: Proc. of the 32nd PODS. ACM (2013)

    Google Scholar 

  2. Agarwal, P.K., Cheng, S.W., Yi, K.: Range searching on uncertain data. ACM Transactions on Algorithms (TALG) 8(4), 43 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Agarwal, P.K., Har-Peled, S., Suri, S., Yıldız, H., Zhang, W.: Convex hulls under uncertainty. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 37–48. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44777-2_4

    Google Scholar 

  4. Fink, M., Hershberger, J., Kumar, N., Suri, S.: Hyperplane separability and convexity of probabilistic point sets. In: Proc. of the 32nd SoCG. ACM (2016)

    Google Scholar 

  5. Huang, L., Li, J.: Approximating the expected values for combinatorial optimization problems over stochastic points. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 910–921. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_74

    Chapter  Google Scholar 

  6. Huang, L., Li, J., Phillips, J.M., Wang, H.: \(\epsilon \)-kernel coresets for stochastic points. arXiv preprint arXiv:1411.0194 (2014)

  7. Jørgensen, A., Löffler, M., Phillips, J.M.: Geometric computations on indecisive points. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 536–547. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22300-6_45

    Chapter  Google Scholar 

  8. Kamousi, P., Chan, T., Suri, S.: Stochastic minimum spanning trees in euclidean spaces. In: Proc. of the 27th SoCG, pp. 65–74. ACM (2011)

    Google Scholar 

  9. Kamousi, P., Chan, T.M., Suri, S.: Closest pair and the post office problem for stochastic points. Computational Geometry 47(2), 214–223 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, C., Fan, C., Luo, J., Zhong, F., Zhu, B.: Expected computations on color spanning sets. Journal of Combinatorial Optimization 29(3), 589–604 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Löffler, M., van Kreveld, M.: Largest and smallest convex hulls for imprecise points. Algorithmica 56(2), 235–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Suri, S., Verbeek, K.: On the most likely Voronoi Diagram and nearest neighbor searching. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 338–350. Springer, Cham (2014). doi:10.1007/978-3-319-13075-0_27

    Google Scholar 

  13. Suri, S., Verbeek, K., Yıldız, H.: On the most likely convex hull of uncertain points. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 791–802. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40450-4_67

    Chapter  Google Scholar 

  14. Xue, J., Li, Y., Janardan, R.: On the separability of stochastic geometric objects, with applications. In: Proc. of the 32nd SoCG. ACM (2016)

    Google Scholar 

  15. Xue, J., Li, Y.: Colored stochastic dominance problems. arXiv preprint arXiv:1612.06954 (2016)

  16. Xue, J., Li, Y.: Stochastic closest-pair problem and most-likely nearest-neighbor search in tree spaces. arXiv preprint arXiv:1612.04890 (2016)

  17. Xue, J., Li, Y., Janardan, R.: On the expected diameter, width, and complexity of a stochastic convex-hull. arXiv preprint arXiv:1704.07028 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xue, J., Li, Y., Janardan, R. (2017). On the Expected Diameter, Width, and Complexity of a Stochastic Convex-Hull. In: Ellen, F., Kolokolova, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2017. Lecture Notes in Computer Science(), vol 10389. Springer, Cham. https://doi.org/10.1007/978-3-319-62127-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62127-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62126-5

  • Online ISBN: 978-3-319-62127-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics