Abstract
We study the variant of the art gallery problem where we are given an orthogonal polygon P (possibly with holes) and we want to guard it with the minimum number of sliding cameras. A sliding camera travels back and forth along an orthogonal line segment s in P and a point p in P is said to be visible to the segment s if the perpendicular from p onto s lies in P. Our objective is to compute a set containing the minimum number of sliding cameras (orthogonal segments) such that every point in P is visible to some sliding camera. We study the following two variants of this problem: Minimum Sliding Cameras problem, where the cameras can slide along either horizontal or vertical segments in P, and Minimum Horizontal Sliding Cameras problem, where the cameras are restricted to slide along horizontal segments only. In this work, we design local search PTASes for these two problems improving over the existing constant factor approximation algorithms. We note that in the first problem, the polygons are not allowed to contain holes. In fact, there is a family of polygons with holes for which the performance of our local search algorithm is arbitrarily bad.
S. Bandyapadhyay — The author has been supported by NSF under Grant CCF-1615845.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)
Aschner, R., Katz, M.J., Morgenstern, G., Yuditsky, Y.: Approximation schemes for covering and packing. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 89–100. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36065-7_10
Ashok, P., Basu Roy, A.., Govindarajan, S.: Local search strikes again: PTAS for variants of geometric covering and packing. In COCOON (2017)
Bandyapadhyay, S., Varadarajan, K.R.: On variants of k-means clustering. In SoCG 2016, pp. 14: 1–14: 15 (2016)
Bhattiprolu, V., Har-Peled, S.: Separating a voronoi diagram via local search. In: SoCG 2016, pp. 18: 1–18: 16 (2016)
Biedl, T.C., Chan, T.M., Lee, S., Mehrabi, S., Montecchiani, F., Vosoughpour, H.: On guarding orthogonal polygons with sliding cameras. CoRR, abs/1604.07099 (2016)
Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. DCG 48(2), 373–392 (2012)
Cohen-Addad, V., Mathieu, C.: Effectiveness of local search for geometric optimization. In: SoCG 2015, pp. 329–343 (2015)
Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for k-means and k-median in euclidean and minor-free metrics. In: FOCS 2016, pp. 353–364 (2016)
Berg, M., Durocher, S., Mehrabi, S.: Guarding monotone art galleries with sliding cameras in linear time. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 113–125. Springer, Cham (2014). doi:10.1007/978-3-319-12691-3_10
Durocher, S., Mehrabi, S.: Guarding orthogonal art galleries using sliding cameras: algorithmic and hardness results. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 314–324. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40313-2_29
Friedrichs, S., Hemmer, M., King, J., Schmidt, C.: The continuous 1.5d terrain guarding problem: Discretization, optimal solutions, and PTAS. JoCG 7(1),256–284 (2016)
Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for k-means in doubling metrics. In FOCS 2016, pp. 365–374 (2016)
Govindarajan, S., Raman, R., Ray, S., Basu Roy, A.: Packing and covering with non-piercing regions. In ESA 2016, pp. 47: 1–47: 17 (2016)
Gupta, A., Tangwongsan, K.: Simpler analyses of local search algorithms for facility location. CoRR, abs/0809.2554 (2008)
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k-means clustering. Comput. Geom. 28(2–3), 89–112 (2004)
Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cameras. Int. J. Comput. Geometry Appl. 21(2), 241–250 (2011)
Kirkpatrick, D.G.: An o(lg lg opt)-approximation algorithm for multi-guarding galleries. DCG 53(2), 327–343 (2015)
Krohn, E., Gibson, M., Kanade, G., Varadarajan, K.: Guarding terrains via local search. Journal of Computational Geometry 5(1), 168–178 (2014)
Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete & Computational Geometry 44(4), 883–895 (2010)
O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press Inc, New York (1987). ISBN 0-19-503965-3
O’Rourke, J.: Computational geometry column 52. SIGACT News 43(1), 82–85 (2012). ISSN 0163–5700
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bandyapadhyay, S., Basu Roy, A. (2017). Effectiveness of Local Search for Art Gallery Problems. In: Ellen, F., Kolokolova, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2017. Lecture Notes in Computer Science(), vol 10389. Springer, Cham. https://doi.org/10.1007/978-3-319-62127-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-62127-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62126-5
Online ISBN: 978-3-319-62127-2
eBook Packages: Computer ScienceComputer Science (R0)