Skip to main content

On Constant Depth Circuits Parameterized by Degree: Identity Testing and Depth Reduction

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10392))

Included in the following conference series:

Abstract

In this article we initiate the study of polynomials parameterized by degree by arithmetic circuits of small syntactic degree. We define the notion of fixed parameter tractability and show that there are families of polynomials of degree k that cannot be computed by homogeneous depth four \(\varSigma \varPi ^{\sqrt{k}}\varSigma \varPi ^{\sqrt{k}}\) circuits. Our result implies that there is no parameterized depth reduction for circuits of size \(f(k)n^{O(1)}\) such that the resulting depth four circuit is homogeneous.

We show that testing identity of depth three circuits with syntactic degree k is fixed parameter tractable with k as the parameter. Our algorithm involves an application of the hitting set generator given by Shpilka and Volkovich [APPROX-RANDOM 2009]. Further, we show that our techniques do not generalize to higher depth circuits by proving certain rank-preserving properties of the generator by Shpilka and Volkovich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, M., Vinay, V.: Arithmetic circuits: a chasm at depth four. In: FOCS, pp. 67–75 (2008)

    Google Scholar 

  2. Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms. SIAM J. Discrete Math. 26(2), 695–717 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arvind, V., Köbler, J., Kuhnert, S., Torán, J.: Solving linear equations parameterized by hamming weight. Algorithmica 75(2), 322–338 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Björklund, A.: Exact covers via determinants. In: STACS, pp. 95–106 (2010)

    Google Scholar 

  5. Björklund, A., Husfeldt, T., Taslaman, N.: Shortest cycle through specified elements. In: SODA, pp. 1747–1753 (2012)

    Google Scholar 

  6. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory, vol. 7. Springer Science & Business Media, Heidelberg (2013)

    MATH  Google Scholar 

  7. Chauhan, A., Rao, B.V.R.: Parameterized analogues of probabilistic computation. In: CALDAM, pp. 181–192 (2015)

    Google Scholar 

  8. Chen, Z., Fu, B., Liu, Y., Schweller, R.T.: On testing monomials in multivariate polynomials. Theor. Comput. Sci. 497, 39–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013). http://dx.doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  10. Engels, C.: Why are certain polynomials hard?: a look at non-commutative, parameterized and homomorphism polynomials. Ph.D. thesis, Saarland University (2016)

    Google Scholar 

  11. Fischer, I.: Sums of like powers of multivariate linear forms. Mathemat. Mag. 67(1), 59–61 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016)

    Article  MathSciNet  Google Scholar 

  13. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S., Rao, B.V.R.: Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci. 78(3), 698–706 (2012). http://dx.doi.org/10.1016/j.jcss.2011.10.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits: a chasm at depth three. In: FOCS 2013, pp. 578–587. IEEE (2013)

    Google Scholar 

  15. Kumar, M., Maheshwari, G., Sarma M.N., J.: Arithmetic circuit lower bounds via maxrank. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 661–672. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39206-1_56

    Chapter  Google Scholar 

  16. Müller, M.: Parameterized randomization. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg im Breisgau (2008)

    Google Scholar 

  17. Nisan, N.: Lower bounds for non-commutative computation. In: STOC, pp. 410–418. ACM (1991)

    Google Scholar 

  18. Raz, R.: Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM 56(2) (2009)

    Google Scholar 

  19. Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non-commutative models. Comput. Complex. 14(1), 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Saptharishi, R., Chillara, S., Kumar, M.: A survey of lower bounds in arithmetic circuit complexity. Technical report (2016). https://github.com/dasarpmar/lowerbounds-survey/releases

  21. Saxena, N.: Diagonal circuit identity testing and lower bounds. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 60–71. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70575-8_6

    Chapter  Google Scholar 

  22. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM (JACM) 27(4), 701–717 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shpilka, A., Volkovich, I.: Improved polynomial identity testing for read-once formulas. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM -2009. LNCS, vol. 5687, pp. 700–713. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03685-9_52

    Chapter  Google Scholar 

  24. Tavenas, S.: Improved bounds for reduction to depth 4 and depth 3. Inf. Comput. 240, 2–11 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of polynomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979). doi:10.1007/3-540-09519-5_73

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Raghavendra Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ghosal, P., Prakash, O., Rao, B.V.R. (2017). On Constant Depth Circuits Parameterized by Degree: Identity Testing and Depth Reduction. In: Cao, Y., Chen, J. (eds) Computing and Combinatorics. COCOON 2017. Lecture Notes in Computer Science(), vol 10392. Springer, Cham. https://doi.org/10.1007/978-3-319-62389-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62389-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62388-7

  • Online ISBN: 978-3-319-62389-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics