Skip to main content

An Analysis of Reordering Algorithms to Reduce the Computational Cost of the Jacobi-Preconditioned CG Solver Using High-Precision Arithmetic

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Abstract

Several heuristics for bandwidth and profile reductions have been proposed since the 1960s. In systematic reviews, 133 heuristics applied to these problems have been found. The results of these heuristics have been analyzed so that, among them, 13 were selected in a manner that no simulation or comparison showed that these algorithms could be outperformed by any other algorithm in the publications analyzed, in terms of bandwidth or profile reductions and also considering the computational costs of the heuristics. Therefore, these 13 heuristics were selected as the most promising low-cost methods to solve these problems. Based on this experience, this article reports that in certain cases no heuristic for bandwidth or profile reduction can reduce the computational cost of the Jacobi-preconditioned Conjugate Gradient Method when using high-precision numerical computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey, D.H.: High-precision floating-point arithmetic in scientific computation. Comput. Sci. Eng. 7(3), 54–61 (2005)

    Article  Google Scholar 

  2. Bernardes, J.A.B., Gonzaga de Oliveira, S.L.: A systematic review of heuristics for profile reduction of symmetric matrices. Procedia Comput. Sci. 51, 221–230 (2015). (International Conference on Computational Science, ICCS)

    Article  Google Scholar 

  3. Burgess, D.A., Giles, M.: Renumbering unstructured grids to improve the performance of codes on hierarchial memory machines. Adv. Eng. Softw. 28(3), 189–201 (1997)

    Article  Google Scholar 

  4. Burgess, I.W., Lai, P.K.F.: A new node renumbering algorithm for bandwidth reduction. Int. J. Numer. Methods Eng. 23, 1693–1704 (1986)

    Article  MATH  Google Scholar 

  5. Chagas, G.O., Gonzaga de Oliveira, S.L.: Metaheuristic-based heuristics for symmetric-matrix bandwidth reduction: a systematic review. Procedia Comput. Sci. (ICCS) 51, 211–220 (2015)

    Article  Google Scholar 

  6. Das, R., Mavriplis, D.J., Saltz, J.H., Gupta, S.K., Ponnusamy, R.: Design and implementation of a parallel unstructured Euler solver using software primitives. AIAA J. 32(3), 489–496 (1994)

    Article  MATH  Google Scholar 

  7. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Duff, I.S., Meurant, G.A.: The effect of ordering on preconditioned conjugate gradients. BIT Numer. Math. 29(4), 635–657 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Felippa, C.A.: Solution of linear equations with skyline-stored symmetric matrix. Comput. Struct. 5(1), 13–29 (1975)

    Article  MATH  Google Scholar 

  10. George, A., Liu, J.W.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  11. George, A., Liu, J.W.H.: An implementation of a pseudoperipheral node finder. ACM Trans. Math. Softw. 5(3), 284–295 (1979)

    Article  MATH  Google Scholar 

  12. Gibbs, N.E., Poole, W.G., Stockmeyer, P.K.: An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. Numer. Anal. 13(2), 236–250 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gonzaga de Oliveira, S.L., Abreu, A.A.A.M., Robaina, D., Kischinhevsky, M.: A new heuristic for bandwidth and profile reductions of matrices using a self-organizing map. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 54–70. Springer, Cham (2016). doi:10.1007/978-3-319-42085-1_5

    Chapter  Google Scholar 

  14. Gonzaga de Oliveira, S.L., Abreu, A.A.A.M., Robaina, D.T., Kischnhevsky, M.: An evaluation of four reordering algorithms to reduce the computational cost of the Jacobi-preconditioned conjugate gradient method using high-precision arithmetic. Int. J. Bus. Intell. Data Min. 12(2), 190–209 (2017). http://dx.doi.org/10.1504/IJBIDM.2017.10004158

    Article  Google Scholar 

  15. Gonzaga de Oliveira, S.L., Bernardes, J.A.B., Chagas, G.O.: An evaluation of low-cost heuristics for matrix bandwidth and profile reductions. Comput. Appl. Math. (2016). doi:10.1007/s40314-016-0394-9

  16. Gonzaga de Oliveira, S.L., Bernardes, J.A.B., Chagas, G.O.: An evaluation of several heuristics for bandwidth and profile reductions to reduce the computational cost of the preconditioned conjugate gradient method. In: The XLVIII of the Brazilian Symposium of Operations Research (SBPO), Vitória, Brazil, September 2016

    Google Scholar 

  17. Gonzaga de Oliveira, S.L., Chagas, G.O.: A systematic review of heuristics for symmetric-matrix bandwidth reduction: methods not based on metaheuristics. In: The XLVII Brazilian Symposium of Operational Research (SBPO), Ipojuca-PE, Brazil, August 2015. Sobrapo

    Google Scholar 

  18. Gonzaga de Oliveira, S.L., Kischinhevsky, M.: Sierpiński curve for total ordering of a graph-based adaptive simplicial-mesh refinement for finite volume discretizations. In: Proceedings of the Brazilian National Conference on Computational and Applied Mathematics (CNMAC), pp. 581–585, Belém, Brazil (2008)

    Google Scholar 

  19. Gonzaga de Oliveira, S.L., Kischinhevsky, M., Tavares, J.M.R.S.: Novel graph-based adaptive triangular mesh refinement for finite-volume discretizations. Comput. Model. Eng. Sci. 95(2), 119–141 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Gonzaga de Oliveira, S.L., Oliveira, F.S., Chagas, G.O.: A novel approach to the weighted laplacian formulation applied to 2D delaunay triangulations. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9155, pp. 502–515. Springer, Cham (2015). doi:10.1007/978-3-319-21404-7_37

    Chapter  Google Scholar 

  21. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(36), 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  22. Johnson, D.: A theoretician’s guide to the experimental analysis of algorithms. In: Goldwasser, M., Johnson, D.S., McGeoch, C.C., (eds.) Proceedings of the 5th and 6th DIMACS Implementation Challenges, Providence (2002)

    Google Scholar 

  23. Kaveh, A., Sharafi, P.: Ordering for bandwidth and profile minimization problems via charged system search algorithm. IJST-T Civ. Eng. 36(2), 39–52 (2012)

    Google Scholar 

  24. Koohestani, B., Poli, R.: A hyper-heuristic approach to evolving algorithms for bandwidth reduction based on genetic programming. In: Bramer, M., Petridis, M., Nolle, L. (eds.) Research and Development in Intelligent Systems XXVIII, pp. 93–106. Springer, London (2011). doi:10.1007/978-1-4471-2318-7_7

    Chapter  Google Scholar 

  25. Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront reduction. BIT Numer. Math. 37(3), 559–590 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lanczos, C.: Solutions of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stand. 49(1), 33–53 (1952)

    Article  MathSciNet  Google Scholar 

  27. Lim, A., Rodrigues, B., Xiao, F.: A fast algorithm for bandwidth minimization. Int. J. Artif. Intell. Tools 3, 537–544 (2007)

    Article  Google Scholar 

  28. Lin, Y.X., Yuan, J.J.: Profile minimization problem for matrices and graphs. Acta Mathematicae Applicatae Sinica 10(1), 107–122 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Medeiros, S.R.P., Pimenta, P.M., Goldenberg, P.: Algorithm for profile and wavefront reduction of sparse matrices with a symmetric structure. Eng. Comput. 10(3), 257–266 (1993)

    Article  Google Scholar 

  30. Mladenovic, N., Urosevic, D., Pérez-Brito, D., García-González, C.G.: Variable neighbourhood search for bandwidth reduction. Eur. J. Oper. Res. 200, 14–27 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Papadimitriou, C.H.: The NP-completeness of bandwidth minimization problem. Comput. J. 16, 177–192 (1976)

    MathSciNet  MATH  Google Scholar 

  32. Reid, J.K., Scott, J.A.: Ordering symmetric sparse matrices for small profile and wavefront. Int. J. Numer. Methods Eng. 45(12), 1737–1755 (1999)

    Article  MATH  Google Scholar 

  33. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sloan, S.W.: A Fortran program for profile and wavefront reduction. Int. J. Numer. Methods Eng. 28(11), 2651–2679 (1989)

    Article  MATH  Google Scholar 

  35. Snay, R.A.: Reducing the profile of sparse symmetric matrices. Bulletin Geodésique 50(4), 341–352 (1976)

    Article  MathSciNet  Google Scholar 

  36. The MathWorks, Inc.: MATLAB, 1994–2015. http://www.mathworks.com/products/matlab

  37. Velho, L., Figueiredo, L.H., Gomes, J.: Hierarchical generalized triangle strips. Vis. Comput. 15(1), 21–35 (1999)

    Article  Google Scholar 

  38. Wang, Q., Guo, Y.C., Shi, X.W.: A generalized GPS algorithm for reducing the bandwidth and profile of a sparse matrix. Prog. Electromagn. Res. 90, 121–136 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was undertaken with the support of the Fapemig - Fundação de Amparo à Pesquisa do Estado de Minas Gerais. The authors would like to thank respectively Prof. Dr. Dragan Urosevic, from the Mathematical Institute SANU, and Prof. Dr. Fei Xiao, from Beepi, for sending us the VNS-band executable programs, and the source code of the FNCHC heuristic. In addition, we would like to thank the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanderson L. Gonzaga de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gonzaga de Oliveira, S.L., Chagas, G.O., Bernardes, J.A.B. (2017). An Analysis of Reordering Algorithms to Reduce the Computational Cost of the Jacobi-Preconditioned CG Solver Using High-Precision Arithmetic. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62392-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62391-7

  • Online ISBN: 978-3-319-62392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics