Abstract
Several heuristics for bandwidth and profile reductions have been proposed since the 1960s. In systematic reviews, 133 heuristics applied to these problems have been found. The results of these heuristics have been analyzed so that, among them, 13 were selected in a manner that no simulation or comparison showed that these algorithms could be outperformed by any other algorithm in the publications analyzed, in terms of bandwidth or profile reductions and also considering the computational costs of the heuristics. Therefore, these 13 heuristics were selected as the most promising low-cost methods to solve these problems. Based on this experience, this article reports that in certain cases no heuristic for bandwidth or profile reduction can reduce the computational cost of the Jacobi-preconditioned Conjugate Gradient Method when using high-precision numerical computations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bailey, D.H.: High-precision floating-point arithmetic in scientific computation. Comput. Sci. Eng. 7(3), 54–61 (2005)
Bernardes, J.A.B., Gonzaga de Oliveira, S.L.: A systematic review of heuristics for profile reduction of symmetric matrices. Procedia Comput. Sci. 51, 221–230 (2015). (International Conference on Computational Science, ICCS)
Burgess, D.A., Giles, M.: Renumbering unstructured grids to improve the performance of codes on hierarchial memory machines. Adv. Eng. Softw. 28(3), 189–201 (1997)
Burgess, I.W., Lai, P.K.F.: A new node renumbering algorithm for bandwidth reduction. Int. J. Numer. Methods Eng. 23, 1693–1704 (1986)
Chagas, G.O., Gonzaga de Oliveira, S.L.: Metaheuristic-based heuristics for symmetric-matrix bandwidth reduction: a systematic review. Procedia Comput. Sci. (ICCS) 51, 211–220 (2015)
Das, R., Mavriplis, D.J., Saltz, J.H., Gupta, S.K., Ponnusamy, R.: Design and implementation of a parallel unstructured Euler solver using software primitives. AIAA J. 32(3), 489–496 (1994)
Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (2011)
Duff, I.S., Meurant, G.A.: The effect of ordering on preconditioned conjugate gradients. BIT Numer. Math. 29(4), 635–657 (1989)
Felippa, C.A.: Solution of linear equations with skyline-stored symmetric matrix. Comput. Struct. 5(1), 13–29 (1975)
George, A., Liu, J.W.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981)
George, A., Liu, J.W.H.: An implementation of a pseudoperipheral node finder. ACM Trans. Math. Softw. 5(3), 284–295 (1979)
Gibbs, N.E., Poole, W.G., Stockmeyer, P.K.: An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. Numer. Anal. 13(2), 236–250 (1976)
Gonzaga de Oliveira, S.L., Abreu, A.A.A.M., Robaina, D., Kischinhevsky, M.: A new heuristic for bandwidth and profile reductions of matrices using a self-organizing map. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 54–70. Springer, Cham (2016). doi:10.1007/978-3-319-42085-1_5
Gonzaga de Oliveira, S.L., Abreu, A.A.A.M., Robaina, D.T., Kischnhevsky, M.: An evaluation of four reordering algorithms to reduce the computational cost of the Jacobi-preconditioned conjugate gradient method using high-precision arithmetic. Int. J. Bus. Intell. Data Min. 12(2), 190–209 (2017). http://dx.doi.org/10.1504/IJBIDM.2017.10004158
Gonzaga de Oliveira, S.L., Bernardes, J.A.B., Chagas, G.O.: An evaluation of low-cost heuristics for matrix bandwidth and profile reductions. Comput. Appl. Math. (2016). doi:10.1007/s40314-016-0394-9
Gonzaga de Oliveira, S.L., Bernardes, J.A.B., Chagas, G.O.: An evaluation of several heuristics for bandwidth and profile reductions to reduce the computational cost of the preconditioned conjugate gradient method. In: The XLVIII of the Brazilian Symposium of Operations Research (SBPO), Vitória, Brazil, September 2016
Gonzaga de Oliveira, S.L., Chagas, G.O.: A systematic review of heuristics for symmetric-matrix bandwidth reduction: methods not based on metaheuristics. In: The XLVII Brazilian Symposium of Operational Research (SBPO), Ipojuca-PE, Brazil, August 2015. Sobrapo
Gonzaga de Oliveira, S.L., Kischinhevsky, M.: Sierpiński curve for total ordering of a graph-based adaptive simplicial-mesh refinement for finite volume discretizations. In: Proceedings of the Brazilian National Conference on Computational and Applied Mathematics (CNMAC), pp. 581–585, Belém, Brazil (2008)
Gonzaga de Oliveira, S.L., Kischinhevsky, M., Tavares, J.M.R.S.: Novel graph-based adaptive triangular mesh refinement for finite-volume discretizations. Comput. Model. Eng. Sci. 95(2), 119–141 (2013)
Gonzaga de Oliveira, S.L., Oliveira, F.S., Chagas, G.O.: A novel approach to the weighted laplacian formulation applied to 2D delaunay triangulations. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9155, pp. 502–515. Springer, Cham (2015). doi:10.1007/978-3-319-21404-7_37
Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(36), 409–436 (1952)
Johnson, D.: A theoretician’s guide to the experimental analysis of algorithms. In: Goldwasser, M., Johnson, D.S., McGeoch, C.C., (eds.) Proceedings of the 5th and 6th DIMACS Implementation Challenges, Providence (2002)
Kaveh, A., Sharafi, P.: Ordering for bandwidth and profile minimization problems via charged system search algorithm. IJST-T Civ. Eng. 36(2), 39–52 (2012)
Koohestani, B., Poli, R.: A hyper-heuristic approach to evolving algorithms for bandwidth reduction based on genetic programming. In: Bramer, M., Petridis, M., Nolle, L. (eds.) Research and Development in Intelligent Systems XXVIII, pp. 93–106. Springer, London (2011). doi:10.1007/978-1-4471-2318-7_7
Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront reduction. BIT Numer. Math. 37(3), 559–590 (1997)
Lanczos, C.: Solutions of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stand. 49(1), 33–53 (1952)
Lim, A., Rodrigues, B., Xiao, F.: A fast algorithm for bandwidth minimization. Int. J. Artif. Intell. Tools 3, 537–544 (2007)
Lin, Y.X., Yuan, J.J.: Profile minimization problem for matrices and graphs. Acta Mathematicae Applicatae Sinica 10(1), 107–122 (1994)
Medeiros, S.R.P., Pimenta, P.M., Goldenberg, P.: Algorithm for profile and wavefront reduction of sparse matrices with a symmetric structure. Eng. Comput. 10(3), 257–266 (1993)
Mladenovic, N., Urosevic, D., Pérez-Brito, D., García-González, C.G.: Variable neighbourhood search for bandwidth reduction. Eur. J. Oper. Res. 200, 14–27 (2010)
Papadimitriou, C.H.: The NP-completeness of bandwidth minimization problem. Comput. J. 16, 177–192 (1976)
Reid, J.K., Scott, J.A.: Ordering symmetric sparse matrices for small profile and wavefront. Int. J. Numer. Methods Eng. 45(12), 1737–1755 (1999)
Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7, 856–869 (1986)
Sloan, S.W.: A Fortran program for profile and wavefront reduction. Int. J. Numer. Methods Eng. 28(11), 2651–2679 (1989)
Snay, R.A.: Reducing the profile of sparse symmetric matrices. Bulletin Geodésique 50(4), 341–352 (1976)
The MathWorks, Inc.: MATLAB, 1994–2015. http://www.mathworks.com/products/matlab
Velho, L., Figueiredo, L.H., Gomes, J.: Hierarchical generalized triangle strips. Vis. Comput. 15(1), 21–35 (1999)
Wang, Q., Guo, Y.C., Shi, X.W.: A generalized GPS algorithm for reducing the bandwidth and profile of a sparse matrix. Prog. Electromagn. Res. 90, 121–136 (2009)
Acknowledgments
This work was undertaken with the support of the Fapemig - Fundação de Amparo à Pesquisa do Estado de Minas Gerais. The authors would like to thank respectively Prof. Dr. Dragan Urosevic, from the Mathematical Institute SANU, and Prof. Dr. Fei Xiao, from Beepi, for sending us the VNS-band executable programs, and the source code of the FNCHC heuristic. In addition, we would like to thank the reviewers for their valuable comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Gonzaga de Oliveira, S.L., Chagas, G.O., Bernardes, J.A.B. (2017). An Analysis of Reordering Algorithms to Reduce the Computational Cost of the Jacobi-Preconditioned CG Solver Using High-Precision Arithmetic. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-62392-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62391-7
Online ISBN: 978-3-319-62392-4
eBook Packages: Computer ScienceComputer Science (R0)