Abstract
To maintain the quality of electricity is necessary to know the main disturbances in the electrical power system, an investigation into signal behavior is presented in this research through the short circuit fault type classification in transmission lines. The analysis of the database UFPAFaults using the KNN algorithm with a change in the calculation of similarity allowed the classifier to execute multivariate time series. On the other hand, the DTW calculation dispenses preprocessing steps as front ends adopted in several papers and presents satisfactory results in the classification of these faults. The comparison of this classifier with Frame Based Sequence Classification architecture, shows the relevance of direct classification of faults using KNN-DTW.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Properly labeled and found in https://github.com/bruno1307/ufpafaults-knn-dtw.
References
Yadav, A., Dash, Y.: An overview of transmission line protection by artificial neural network: fault detection, fault classification, fault location, and fault direction discrimination. Adv. Artif. Neural Syst. 2014, 20 (2014). Article ID 230382, Hindawi Publishing Corporation
Fontes, C.: Pattern recognition in multivariate time series - a case study applied to fault detection in a gas turbine. Eng. Appl. Artif. Intell. 49, 10–18 (2015)
Pereira, S., Moreto, M.: A wavelet based tool to assist the automated analysis of waveform disturbances records in power generators. IEEE Lat. Am. Trans. 14(8), 3621–3629 (2016)
Patel, V., Chistian, A.: Wavelet transform application to fault classification. Indian J. Appl. Res. 5(2) (2015). ISSN: 2249-555X
Shaik, A., Pulipaka, R.: A new wavelet based fault detection, classification and location in transmission lines. Electr. Power Energy Syst. 64, 35–40 (2014)
Reddy, M., Rajesh, D., Mohanta, D.: Robust transmission line fault classification using wavelet multi-resolution analysis. Comput. Electr. Eng. Comput. Electr. Eng. 39, 1219–1247 (2013)
Morais, J.: A framework for evaluating automatic classification of underlying causes of disturbances and its application to short-circuit faults. IEEE (2011)
Tayeb, E.B.M., Rhirn, O.A.A.A.: Transmission line faults detection, classification and location using artificial neural network. IEEE (2012). Copyright Notice: 978-1-4673-6008-11
Yurtman, A., Barshan, B.: Detection and evaluation of physical therapy exercises by dynamic time warping using wearable motion sensor units. In: Gelenbe, E., Lent, R. (eds.) Information Sciences and Systems 2013. Lecture Notes in Electrical Engineering, vol. 264, pp. 305–314. Springer, Cham (2013). doi:10.1007/978-3-319-01604-7_30
Tang, B., He, H.: ENN: extended nearest neighbor method for pattern recognition. Res. Front. 10(3) (2015). IEEE, Print ISSN: 1556–603X
Campos, G., ZimekEmail, A., Sander, J.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min. Knowl. Discov. 30(4), 891–927 (2016). doi:10.1007/s10618-015-0444-8
Giorgino, T.: Computing and visualizing dynamic time warping alignments in R: the dtw package. J. Stat. Softw. 31, 1–24 (2009)
Geler, Z., Kurbalija, V., Radovanović, M., Ivanović, M.: Impact of the Sakoe-Chiba band on the DTW time series distance measure for kNN classification. In: Buchmann, R., Kifor, C.V., Yu, J. (eds.) KSEM 2014. LNCS, vol. 8793, pp. 105–114. Springer, Cham (2014). doi:10.1007/978-3-319-12096-6_10
Silva, D., Batista, G.: Speeding up all-pairwise dynamic time warping matrix calculation. In: Proceedings of the 2016 SIAM International Conference on Data Mining, eISBN: 978-1-61197-434-8 Book Code: PRDT16
Homci, M., Chagas, P., Miranda, B., Freire, J., Viégas, R., Pires, Y., Meiguins, B., Morais, J.: A new strategy based on feature selection for fault classification in transmission lines. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 376–387. Springer, Cham (2016). doi:10.1007/978-3-319-47955-2_31
Valenti, A., Giuffrida, S., Linguanti, F.: Decision trees analysis in a low tension real estate market: the case of Troina (Italy). In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9157, pp. 237–252. Springer, Cham (2015). doi:10.1007/978-3-319-21470-2_17
Marmarelis, V.Z.: Gaussian White Noise, Nonlinear Dynamic Modeling of Physiological Systems (2012). Online ISBN: 9780471679370
Acknowledgment
The authors thank Eletrobras-Eletronorte for the technical support and Coordination of Personal Improvement of Higher Education of the Ministry of Education and Culture of Braisil for research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Costa, B.G. et al. (2017). Fault Classification on Transmission Lines Using KNN-DTW. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-62392-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62391-7
Online ISBN: 978-3-319-62392-4
eBook Packages: Computer ScienceComputer Science (R0)