Skip to main content

Fault Classification on Transmission Lines Using KNN-DTW

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Abstract

To maintain the quality of electricity is necessary to know the main disturbances in the electrical power system, an investigation into signal behavior is presented in this research through the short circuit fault type classification in transmission lines. The analysis of the database UFPAFaults using the KNN algorithm with a change in the calculation of similarity allowed the classifier to execute multivariate time series. On the other hand, the DTW calculation dispenses preprocessing steps as front ends adopted in several papers and presents satisfactory results in the classification of these faults. The comparison of this classifier with Frame Based Sequence Classification architecture, shows the relevance of direct classification of faults using KNN-DTW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Properly labeled and found in https://github.com/bruno1307/ufpafaults-knn-dtw.

References

  1. Yadav, A., Dash, Y.: An overview of transmission line protection by artificial neural network: fault detection, fault classification, fault location, and fault direction discrimination. Adv. Artif. Neural Syst. 2014, 20 (2014). Article ID 230382, Hindawi Publishing Corporation

    Google Scholar 

  2. Fontes, C.: Pattern recognition in multivariate time series - a case study applied to fault detection in a gas turbine. Eng. Appl. Artif. Intell. 49, 10–18 (2015)

    Article  Google Scholar 

  3. Pereira, S., Moreto, M.: A wavelet based tool to assist the automated analysis of waveform disturbances records in power generators. IEEE Lat. Am. Trans. 14(8), 3621–3629 (2016)

    Article  Google Scholar 

  4. Patel, V., Chistian, A.: Wavelet transform application to fault classification. Indian J. Appl. Res. 5(2) (2015). ISSN: 2249-555X

    Google Scholar 

  5. Shaik, A., Pulipaka, R.: A new wavelet based fault detection, classification and location in transmission lines. Electr. Power Energy Syst. 64, 35–40 (2014)

    Article  Google Scholar 

  6. Reddy, M., Rajesh, D., Mohanta, D.: Robust transmission line fault classification using wavelet multi-resolution analysis. Comput. Electr. Eng. Comput. Electr. Eng. 39, 1219–1247 (2013)

    Article  Google Scholar 

  7. Morais, J.: A framework for evaluating automatic classification of underlying causes of disturbances and its application to short-circuit faults. IEEE (2011)

    Google Scholar 

  8. Tayeb, E.B.M., Rhirn, O.A.A.A.: Transmission line faults detection, classification and location using artificial neural network. IEEE (2012). Copyright Notice: 978-1-4673-6008-11

    Google Scholar 

  9. Yurtman, A., Barshan, B.: Detection and evaluation of physical therapy exercises by dynamic time warping using wearable motion sensor units. In: Gelenbe, E., Lent, R. (eds.) Information Sciences and Systems 2013. Lecture Notes in Electrical Engineering, vol. 264, pp. 305–314. Springer, Cham (2013). doi:10.1007/978-3-319-01604-7_30

    Chapter  Google Scholar 

  10. Tang, B., He, H.: ENN: extended nearest neighbor method for pattern recognition. Res. Front. 10(3) (2015). IEEE, Print ISSN: 1556–603X

    Google Scholar 

  11. Campos, G., ZimekEmail, A., Sander, J.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min. Knowl. Discov. 30(4), 891–927 (2016). doi:10.1007/s10618-015-0444-8

    Article  MathSciNet  Google Scholar 

  12. Giorgino, T.: Computing and visualizing dynamic time warping alignments in R: the dtw package. J. Stat. Softw. 31, 1–24 (2009)

    Article  Google Scholar 

  13. Geler, Z., Kurbalija, V., Radovanović, M., Ivanović, M.: Impact of the Sakoe-Chiba band on the DTW time series distance measure for kNN classification. In: Buchmann, R., Kifor, C.V., Yu, J. (eds.) KSEM 2014. LNCS, vol. 8793, pp. 105–114. Springer, Cham (2014). doi:10.1007/978-3-319-12096-6_10

    Google Scholar 

  14. Silva, D., Batista, G.: Speeding up all-pairwise dynamic time warping matrix calculation. In: Proceedings of the 2016 SIAM International Conference on Data Mining, eISBN: 978-1-61197-434-8 Book Code: PRDT16

    Google Scholar 

  15. Homci, M., Chagas, P., Miranda, B., Freire, J., Viégas, R., Pires, Y., Meiguins, B., Morais, J.: A new strategy based on feature selection for fault classification in transmission lines. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 376–387. Springer, Cham (2016). doi:10.1007/978-3-319-47955-2_31

    Chapter  Google Scholar 

  16. Valenti, A., Giuffrida, S., Linguanti, F.: Decision trees analysis in a low tension real estate market: the case of Troina (Italy). In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9157, pp. 237–252. Springer, Cham (2015). doi:10.1007/978-3-319-21470-2_17

    Chapter  Google Scholar 

  17. Marmarelis, V.Z.: Gaussian White Noise, Nonlinear Dynamic Modeling of Physiological Systems (2012). Online ISBN: 9780471679370

    Google Scholar 

Download references

Acknowledgment

The authors thank Eletrobras-Eletronorte for the technical support and Coordination of Personal Improvement of Higher Education of the Ministry of Education and Culture of Braisil for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Carlos Arouche Freire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Costa, B.G. et al. (2017). Fault Classification on Transmission Lines Using KNN-DTW. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62392-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62391-7

  • Online ISBN: 978-3-319-62392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics