Abstract
Human activity recognition has been extensively studied and achieves promising results in Computer Vision community. Typical activity recognition methods require observe the whole process, then extract features and build a model to classify the activity. However, in many applications, the ability to early recognition or prediction a human activity before it completes is necessary. This task is challenging because of the lack of information when only a fraction of the activity is observed. To get an accurate prediction, the methods must have high discriminated power with just the beginning part of activity. While activity recognition is very popular and has a lot of surveys, activity prediction is still a new and relatively unexplored problem. To the best of our knowledge, there is no survey specifically focusing on human activity prediction. In this survey, we give a systematic review of current methods for activity prediction and how they overcome the above challenge. Moreover, this paper also compares performances of various techniques on the common dataset to show the current state of research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 14–29 (2016)
Ryoo, M.S.: Human activity prediction: early recognition of ongoing activities from streaming videos. In: 2011 International Conference on Computer Vision, pp. 1036–1043, November 2011
Dawn, D.D., Shaikh, S.H.: A comprehensive survey of human action recognition with spatio-temporal interest point (STIP) detector. Vis. Comput. 32(3), 289–306 (2016)
Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28(6), 976–990 (2010)
Vrigkas, M., Nikou, C., Kakadiaris, I.A.: A review of human activity recognition methods. Front. Robot. AI 2, 28 (2015)
Cao, Y., Barrett, D., Barbu, A., Narayanaswamy, S., Yu, H., Michaux, A., Lin, Y., Dickinson, S., Siskind, J.M., Wang, S.: Recognize human activities from partially observed videos. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013
Li, K., Fu, Y.: Prediction of human activity by discovering temporal sequence patterns. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1644–1657 (2014)
Xu, K., Qin, Z., Wang, G.; Human activities prediction by learning combinatorial sparse representations. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 724–728, September 2016
Kong, Y., Fu, Y.: Max-margin action prediction machine. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1844–1858 (2016)
Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72, October 2005
Raptis, M., Sigal, L.: Poselet key-framing: a model for human activity recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013
Ding, W., Liu, K., Cheng, F., Zhang, J.: Learning hierarchical spatio-temporal pattern for human activity prediction. J. Vis. Comun. Image Represent. 35(C), 103–111 (2016)
Ke, Q., Bennamoun, M., An, S., Boussaid, F., Sohel, F.: Human interaction prediction using deep temporal features. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 403–414. Springer, Cham (2016). doi:10.1007/978-3-319-48881-3_28
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893, June 2005
Wang, H., Yang, W., Yuan, C., Ling, H., Hu, W.: Human activity prediction using temporally-weighted generalized time warping. Neurocomputing 225(C), 139–147 (2017)
Wang, H., Klser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: CVPR 2011, pp. 3169–3176 (2011)
Ryoo, M.S., Fuchs, T.J., Xia, L., Aggarwal, J.K., Matthies, L.: Robot-centric activity prediction from first-person videos: what will they do to me? In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, HRI 2015, pp. 295–302. ACM, New York (2015)
Bourdev, L., Malik, J.: Poselets: body part detectors trained using 3D human pose annotations. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1365–1372, September 2009
Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2014
Ma, S., Sigal, L., Sclaroff, S.: Learning activity progression in LSTMs for activity detection and early detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1942–1950, June 2016
Hu, J.-F., Zheng, W.-S., Ma, L., Wang, G., Lai, J.: Real-time RGB-D activity prediction by soft regression. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 280–296. Springer, Cham (2016). doi:10.1007/978-3-319-46448-0_17
Joachims, T., Finley, T., Chun-Nam John, Y.: Cutting-plane training of structural svms. Mach. Learn. 77(1), 27–59 (2009)
Hoai, M., De la Torre, F.: Max-margin early event detectors. Int. J. Comput. Vis. 107(2), 191–202 (2014)
Lan, T., Chen, T.-C., Savarese, S.: A hierarchical representation for future action prediction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 689–704. Springer, Cham (2014). doi:10.1007/978-3-319-10578-9_45
Chakraborty, A., Roy-Chowdhury, A.K.: Context-aware activity forecasting. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 21–36. Springer, Cham (2015). doi:10.1007/978-3-319-16814-2_2
Li, K., Hu, J., Fu, Y.: Modeling complex temporal composition of actionlets for activity prediction. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 286–299. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33718-5_21
Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled video. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Ryoo, M.S., Aggarwal, J.K.: UT-Interaction Dataset, ICPR contest on Semantic Description of Human Activities (SDHA) (2010). http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html
Koppula, H.S., Gupta, R. Saxena, A.: Learning human activities and object affordances from RGB-D videos. CoRR, abs/1210.1207 (2012)
Kong, Y., Jia, Y., Fu, Y.: Learning human interaction by interactive phrases. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 300–313. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33718-5_22
Ryoo, M.S., Matthies, L.: First-person activity recognition: what are they doing to me? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, June 2013
Ghanem, B., Heilbron, F.C., Escorcia, V., Niebles, J.C.: ActivityNet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)
Kong, Y., Kit, D., Fu, Y.: A discriminative model with multiple temporal scales for action prediction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 596–611. Springer, Cham (2014). doi:10.1007/978-3-319-10602-1_39
Simonyan,K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)
Acknowledgments
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Trong, N.P., Nguyen, H., Kazunori, K., Le Hoai, B. (2017). A Comprehensive Survey on Human Activity Prediction. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-62392-4_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62391-7
Online ISBN: 978-3-319-62392-4
eBook Packages: Computer ScienceComputer Science (R0)