Skip to main content

Distributed, Immersive and Multi-platform Molecular Visualization for Chemistry Learning

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Abstract

This paper presents Dimmol (acronym for Distributed Immersive Multi-platform Molecular visualization), a scientific visualization application based on UnityMol, developed with the Unity game engine, and that uses the Unity Cluster Package to enable distributed and immersive visualization of molecular structures across multiple device of different types, with support to Google VR, molecular trajectory files, and master-host-slave rendering. Its goal is to improve and facilitate the way educators and researchers visualize molecular structures with students and partners. In order to demonstrate a possible use scenario for Dimmol, better understand the contributions of each platform it can be executed in, and gather performance data, three molecular visualizations are loaded on it and distributed to a graphic cluster, a laptop, a tablet, and a smartphone. Other possible uses are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Oculus Rift: https://www.oculus.com/rift/.

  2. 2.

    Google Cardboard: https://vr.google.com/cardboard/.

  3. 3.

    Kinect for Xbox 360: http://www.xbox.com/en-US/xbox-360/accessories/kinect.

  4. 4.

    Second Life: http://secondlife.com.

  5. 5.

    UnityMol: http://www.baaden.ibpc.fr/umol/.

  6. 6.

    UnityMol official repository: https://github.com/bam93/UnityMol-Releases.

  7. 7.

    Unity3D: https://unity3d.com.

  8. 8.

    Worldwide Protein Data Bank: http://www.wwpdb.org.

  9. 9.

    Dimmol repository: https://github.com/LuizSSB/dimmol.

  10. 10.

    XYZ (format): http://openbabel.org/wiki/XYZ.

  11. 11.

    GAMESS: http://www.msg.chem.iastate.edu/index.html.

  12. 12.

    Abalone: http://www.biomolecular-modeling.com/Abalone/index.html.

References

  1. Get Cardboard - Google VR. https://vr.google.com/cardboard/get-cardboard. Accessed Jan 2017

  2. Google VR - Google Developers. https://developers.google.com/vr. Accessed Jan 2017

  3. Solution structure of lactodifucotetraose (ldft) beta anomer (2014). http://www.rcsb.org/pdb/explore.do?structureId=2MK1

  4. Anderson, A., Weng, Z.: VRDD: applying virtual reality visualization to protein docking and design. J. Mol. Graph. Model. 17(3–4), 180–186 (1999)

    Article  Google Scholar 

  5. Aztatzi-Pluma, D., Castrejón-González, E.O., Almendarez-Camarillo, A., Alvarado, J.F.J., Durán-Morales, Y.: Study of the molecular interactions between functionalized carbon nanotubes and chitosan. J. Phys. Chem. C 120(4), 2371–2378 (2016)

    Article  Google Scholar 

  6. Casu, A., Spano, L.D., Sorrentino, F., Scateni, R.: RiftArt: bringing masterpieces in the classroom through immersive virtual reality. In: Giachetti, A., Biasotti, S., Tarini, M. (eds.) Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference. The Eurographics Association (2015)

    Google Scholar 

  7. Chastine, J.W., Brooks, J.C., Zhu, Y., Owen, G.S., Harrison, R.W., Weber, I.T.: AMMP-Vis: a collaborative virtual environment for molecular modeling. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST 2005, pp. 8–15. ACM, New York (2005)

    Google Scholar 

  8. Chavent, M., Vanel, A., Tek, A., Levy, B., Robert, S., Raffin, B., Baaden, M.: GPU-accelerated atom and dynamic bond visualization using hyperballs: a unified algorithm for balls, sticks, and hyperboloids. J. Comput. Chem. 32(13), 2924–2935 (2011)

    Article  Google Scholar 

  9. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–72 (1992)

    Article  Google Scholar 

  10. Davies, R.A., John, N.W., MacDonald, J.N., Hughes, K.H.: Visualization of molecular quantum dynamics: a molecular visualization tool with integrated Web3D and haptics. In: Proceedings of the Tenth International Conference on 3D Web Technology, Web3D 2005, pp. 143–150. ACM, New York (2005). http://doi.acm.org/10.1145/1050491.1050512

  11. Delalande, O., Férey, N., Grasseau, G., Baaden, M.: Complex molecular assemblies at hand via interactive simulations. J. Comput. Chem. 30(15), 2375–2387 (2009)

    Article  Google Scholar 

  12. Dias, D.R.C., Neto, M.P., Brega, J.R.F., Gnecco, B.B., Trevelin, L.C., de Paiva Guimarães, M.: Design and evaluation of an advanced virtual reality system for visualization of dentistry structures. In: 2012 18th International Conference on Virtual Systems and Multimedia (VSMM), pp. 429–435, September 2012

    Google Scholar 

  13. Dias, D.R.C., Brega, J.R.F., Lamarca, A.F., Neto, M.P., Suguimoto, D.J., Agostinho, I., Gouveia, A.F.: Chemcave3d: sistema de visualizaçao imersivo e interativo de moléculas 3d. In: Workshop de Realidade Virtual e Aumentada, Uberaba-MG (2011)

    Google Scholar 

  14. Disz, T., Papka, M., Stevens, R., Pellegrino, M., Taylor, V.: Virtual reality visualization of parallel molecular dynamics simulation. In: Society for Computer Simulation, pp. 483–487 (1995)

    Google Scholar 

  15. Drouhard, M., Steed, C.A., Hahn, S., Proffen, T., Daniel, J., Matheson, M.: Immersive visualization for materials science data analysis using the oculus rift. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 2453–2461, October 2015

    Google Scholar 

  16. Gardner, H.E.: Frames of Mind: The Theory of Multiple Intelligences. Basic Books, New York City (1983)

    Google Scholar 

  17. Gordon, M.S., Schmidt, M.W.: Advances in electronic structure theory: GAMESS a decade later, pp. 1167–1189. Elsevier, Amsterdam (2005)

    Google Scholar 

  18. Jayaram, S., Connacher, H.I., Lyons, K.W.: Virtual assembly using virtual reality techniques. Comput. Aided Des. 29(8), 575–584 (1997)

    Article  Google Scholar 

  19. Limniou, M., Roberts, D., Papadopoulos, N.: Full immersive virtual environment CAVETM in chemistry education. Comput. Educ. 51(2), 584–593 (2008)

    Article  Google Scholar 

  20. Lv, Z., Tek, A., Da Silva, F., Empereur-mot, C., Chavent, M., Baaden, M.: Game on, science - how video game technology may help biologists tackle visualization challenges. PLOS ONE 8(3), 1–13 (2013)

    Google Scholar 

  21. Mantovani, F.: VR learning: potential and challenges for the use of 3D environments in education and training. In: Riva, G., Galimberti, C. (eds.) Towards CyberPsychology: Mind, Cognitions and Society in the Internet Age, pp. 207–225. IOS Press, Amsterdam (2003). Chap. 12

    Google Scholar 

  22. Merchant, Z., Goetz, E.T., Keeney-Kennicutt, W., Cifuentes, L., Kwok, O., Davis, T.J.: Exploring 3-D virtual reality technology for spatial ability and chemistry achievement. J. Comput. Assist. Learn. 29(6), 579–590 (2013)

    Article  Google Scholar 

  23. Mikropoulos, T.A., Natsis, A.: Educational virtual environments: a ten-year review of empirical research (1999–2009). Comput. Educ. 56(3), 769–780 (2011)

    Article  Google Scholar 

  24. Neto, M.P., Dias, D.R.C., Trevelin, L.C., Paiva Guimarães, M., Brega, J.R.F.: Unity cluster package – dragging and dropping components for multi-projection virtual reality applications based on PC clusters. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9159, pp. 261–272. Springer, Cham (2015). doi:10.1007/978-3-319-21413-9_19

    Chapter  Google Scholar 

  25. Pantelidis, V.S.: Reasons to use virtual reality in education and training courses and a model to determine when to use virtual reality. Themes Sci. Technol. Educ. 2(1–2), 59–70 (2009)

    Google Scholar 

  26. Pastorelli, E., Herrmann, H.: A small-scale, low-budget semi-immersive virtual environment for scientific visualization and research. Procedia Comput. Sci. 25, 14–22 (2013)

    Article  Google Scholar 

  27. Pérez, S., Tubiana, T., Imberty, A., Baaden, M.: Three-dimensional representations of complex carbohydrates and polysaccharides’ sweetunitymol: A video game-based computer graphic software. Glycobiology 25(5), 483–491 (2015)

    Article  Google Scholar 

  28. Stone, J.E., Kohlmeyer, A., Vandivort, K.L., Schulten, K.: Immersive molecular visualization and interactive modeling with commodity hardware. In: Bebis, G., et al. (eds.) ISVC 2010. LNCS, vol. 6454, pp. 382–393. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17274-8_38

    Chapter  Google Scholar 

  29. Virvou, M., Katsionis, G., Manos, K.: Combining software games with education: evaluation of its educational effectiveness. Educ. Technol. Soc. 8(2), 54–65 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CAPES Foundation, a body of the Brazilian Ministry of Education, for financial support. Luiz Soares dos Santos Baglie was recipient of scholarship from CAPES.

The authors would also like to thank Paulo Noronha Lisboa Filho, Ph.D., and Francisco Carlos Lavarda, Ph.D., from the Physics Department of FC/UNESP, for their valuable feedback and suggestions during this study.

The copyright for UnityMol is held by the Centre National de la Recherche Scientifique (CNRS), France. UnityMol is developed by FvNano/LBT Team, and Marc Baaden, Ph.D. The source-code for version 0.9.3 of the software was downloaded from the official public repository.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Soares dos Santos Baglie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

dos Santos Baglie, L.S., Neto, M.P., de Paiva Guimarães, M., Brega, J.R.F. (2017). Distributed, Immersive and Multi-platform Molecular Visualization for Chemistry Learning. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62392-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62391-7

  • Online ISBN: 978-3-319-62392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics