Skip to main content

An Approach for Semantically Enriching Volunteered Geographic Data with Linked Data

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10406))

Included in the following conference series:

  • 1959 Accesses

Abstract

Volunteered geographic information (VGI), which pertains to geographic information voluntarily collected and shared, represents a paradigm shift in the way geographic information is created and shared. However, there are still hurdles in properly using such information. One alternative to improve the use of VGI is to use semantic enrichment. Semantic enrichment is a potential way of mitigating several issues that plague VGI such as low data quality, unreliability, and difficulty in use and recovery, among others. The present study discusses the possibility of semantically enriching volunteered geographic data using Linked Data and presents a simplified algorithm to automate this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.openstreetmap.org.

  2. 2.

    http://www.wikimapia.org.

  3. 3.

    https://www.w3.org/RDF/.

  4. 4.

    http://wiki.dbpedia.org/.

  5. 5.

    http://www.sparql.org/.

  6. 6.

    http://linkedgeodata.org/.

  7. 7.

    http://www.gotadaguaufv.com.br/.

  8. 8.

    http://semanticweb.org/wiki/Triplify.html.

  9. 9.

    http://ontop.inf.unibz.it/.

  10. 10.

    http://virtuoso.openlinksw.com/.

References

  1. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology, 1st edn. Morgan & Claypool (2011)

    Google Scholar 

  2. Elwood, S., Goodchild, M.F., Sui, D.Z.: Researching volunteered geographic information: spatial data, geographic research, and new social practice. Ann. Assoc. Am. Geogr. 102(3), 571–590 (2012)

    Article  Google Scholar 

  3. Clarke, C.: A resource list management tool for undergraduate students based on linked open data principles. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 697–707. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02121-3_51

    Chapter  Google Scholar 

  4. Schade, S., Granell, C., Díaz, L.: Augmenting SDI with linked data. In: Workshop on Linked Spatiotemporal Data, in Conjunction with the 6th International Conference on Geographic Information Science (GIScience), Zurich (2010)

    Google Scholar 

  5. Ballatore, A., Bertolotto, M.: Semantically Enriching VGI in Support of Implicit Feedback Analysis. In: Tanaka, K., Fröhlich, P., Kim, K.-S. (eds.) W2GIS 2011. LNCS, vol. 6574, pp. 78–93. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19173-2_8

    Chapter  Google Scholar 

  6. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: a core for a web of spatial open data. Semant. Web 3(4), 333–354 (2012)

    Google Scholar 

  7. Ronzhin, S.: Semantic enrichment of volunteered geographic information using linked data: a use case scenario for disaster management. Ph.D thesis, University of Twente (2015)

    Google Scholar 

  8. Goodchild, M.F.: Citizens as voluntary sensors: spatial data infrastructure in the world of web 2.0. Int. J. Spat. Data Infrastruct. Res. 2, 4–32 (2007)

    Google Scholar 

  9. Neis, P., Zielstra, D.: Recent developments and future trends in volunteered geographic information research: the case of OpenStreetMap. Future Internet 6(1), 76–106 (2014)

    Article  Google Scholar 

  10. Cooper, A.K., Coetzee, S., Kaczmarek, I., Kourie, D.G., Iwaniak, A., Kubik, T.: Challenges for quality in volunteered geographical information. In: Proceedings of the AfricaGEO 2011 Conference, Cape Town, South Africa (2011)

    Google Scholar 

  11. Zielstra, D., Zipf, A.: A comparative study of proprietary geodata and volunteered geographic information for Germany. In: 13th AGILE International Conference on Geographic Information Science (2010)

    Google Scholar 

  12. Mummidi, L.N., Krumm, J.: Discovering points of interest from users’ map annotations. GeoJournal 72(3–4), 215–227 (2008)

    Article  Google Scholar 

  13. Berners-Lee, T., Bizer, C., Heath, T.: Linked data-the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)

    Article  Google Scholar 

  14. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Sheets, D.: Tabulator: exploring and analyzing linked data on the semantic web. In: CITESEER. Proceedings of the 3rd International Semantic Web User Interaction Workshop, vol. 2006, p. 159 (2006)

    Google Scholar 

  15. Hartig, O.: Provenance information in the web of data. In: LDOW, vol. 538 (2009)

    Google Scholar 

  16. Azevedo, P.C.N.D.: Uma proposta para visualização de linked data sobre enchentes na bacia do rio doce. Projetos e Dissertações em Sistemas de Informação e Gestão do Conhecimento, vol. 2(1) (2013)

    Google Scholar 

  17. Savelyev, A., Xu, S., Janowicz, K., Mülligann, C., Thatcher, J., Luo, W.: Volunteered geographic services: developing a linked data driven location-based service. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Spatial Semantics and Ontologies, pp. 25–31 (2011)

    Google Scholar 

  18. SPARQL Sparql 1.1 Overview. W3C, 2013. Disponível em Acesso em: 11 May 2017

    Google Scholar 

  19. Derczynski, L., Maynard, D., Rizzo, G., van Erp, M., Gorrell, G., Troncy, R., Bontcheva, K.: Analysis of named entity recognition and linking for tweets. Inf. Process. Manage. 51(2), 32–49 (2015)

    Article  Google Scholar 

  20. Han, X., Zhao, J.: Named entity disambiguation by leveraging wikipedia semantic knowledge. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 215–224. ACM (2009)

    Google Scholar 

  21. Moura, T.H.V.M, Davis Jr., C.: Linked Geospatial Data: desafios e oportunidades de pesquisa, p. 13. Santanche, A., Andrade, P.R. (eds.) (2013)

    Google Scholar 

  22. White, C.M.: Social media, crisis communication, and emergency management: leveraging web 2.0 technologies. CRC press (2011)

    Google Scholar 

  23. Gao, H., Barbier, G., Goolsby, R.: Harnessing the crowdsourcing power of social media for disaster relief. IEEE Intell. Syst. 26(3), 10–14 (2011)

    Article  Google Scholar 

  24. Yamada, I., Takeda, H., Takefuji, Y.: An end-to-end entity linking approach for tweets. In: 5th Workshop on Making Sense of Microposts: Big Things Come in Small Packages, # Microposts 2015, at the 24th International Conference on the World Wide Web, CEUR-WS (2015)

    Google Scholar 

  25. Guo, S., Chang, M.W., Kiciman, E.: To link or not to link? a study on end-to-end tweet entity linking. In: HLT-NAACL, pp. 1020–1030 (2013)

    Google Scholar 

Download references

Acknowledgements

This project was partially funded with resources from the agencies FAPEMIG and CAPES, with the support of the Companhia Energética de Minas Gerais (CEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jugurta Lisboa-Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

da Costa, L.S., Oliveira, I.L., Moreira, A., Lisboa-Filho, J. (2017). An Approach for Semantically Enriching Volunteered Geographic Data with Linked Data. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10406. Springer, Cham. https://doi.org/10.1007/978-3-319-62398-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62398-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62397-9

  • Online ISBN: 978-3-319-62398-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics