Abstract
In last years we have got the approximation of the solution of a linear mixed type functional differential equation, considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering a polynomial basis. The present work introduces a numerical scheme using collocation and radial basis functions to solve numerically the non-linear mixed type equation with symmetric delay and advance. The results are similar using collocation, B-splines and exponential radial functions. The preliminary results are promising, but more simulations using different basis of radial functions are needed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abell, K., Elmer, C., Humphries, A., Vleck, E.V.: Computation of mixed type functional differential boundary value problems. SIADS - SIAM J. Appl. Dyn. Syst. 4, 755–781 (2005)
Alvarez-Rodriguez, U., Perez-Leija, A., Egusquiza, I., Grfe, M., Sanz, M., Lamata, L., Szameit, A., Solano, E.: Advanced-retarded differential equations in quantum photonic systems. Sci. Rep. 7 (2017). Art. no. 42933
Bell, J.: Behaviour of some models of myelinated axons. IMA J. Math. Appl. Med. Biol. 1, 149–167 (1984)
Bell, J., Cosner, C.: Threshold conditions for a diffusive model of a myelinated axon. J. Math. Biol. 18, 39–52 (1983)
Buhmann, M.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)
Caruntu, B., Bota, C.: Analytical approximate solutions for a general class of nonlinear delay differential equations. Sci. World J. 2014, 6 (2014). iD 631416
Chi, H., Bell, J., Hassard, B.: Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction. J. Math. Biol. 24, 583–601 (1986)
Ford, N., Lumb, P.: Mixed-type functional differential equations: a numerical approach. J. Comput. Appl. Math. 229(2), 471–479 (2009)
Iakovleva, V., Vanegas, C.: On the solution of differential equations withe delayed and advanced arguments. Electron. J. Differ. Equ. Conf. 13, 57–63 (2005)
Ishizaka, K., Matsudaira, M.: Fluid Mechanical Considerations of Vocal Cord Vibration. Speech Communications Research Laboratory, monography 8 (1972)
Ishizaka, K., Matsudaira, M.: Speech Physiology and Acoustic Phonetics. MacMillan, New York (1977)
Lima, P., Teodoro, M., Ford, N., Lumb, P.: Analytical and numerical investigation of mixed type functional differential equations. J. Comput. Appl. Math. 234, 2732–2744 (2010)
Lima, P., Teodoro, M., Ford, N., Lumb, P.: Finite element solution of a linear mixed-type functional differential equation. Numer. Algorithms 55, 301–320 (2010)
Lima, P., Teodoro, M., Ford, N., Lumb, P.: Analysis and computational approximation of a forward-backward equation arising in nerve conduction. In: Pinelas, S., Chipot, M., Dosla, Z. (eds.) Differential and Difference Equations with Applications. Springer Proceedings in Mathematics & Statistics, vol. 47, pp. 475–483. Springer, New York (2013)
Lucero, J.: Advanced-delay equations for aerolastics oscillations in physiology. Biophys. Rev. Lett. 3, 125–133 (2008)
Lucero, J.: A lumped mucosal wave model of vocal folds revisited: recent extensions and oscillation hysteresis. J. Acoust. Soc. Am. 129, 1568–1579 (2011)
Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equ. 11, 49–128 (1999)
Pontryagin, L., Boltyanskii, V., Gamkrelidze, R., Mishchenko, E.: The Mathematical Theory of Optimal Process. Interscience, New York (1962)
Rustichini, A.: Functional differential equations of mixed type: the linear autonomous case. J. Dyn. Differ. Equ. 1, 121–143 (1989)
Rustichini, A.: Hopf bifurcation for functional differential equations of mixed type. J. Dyn. Differ. Equ. 1, 145–177 (1989)
Shakery, F., Dehghan, M.: Solution of delay differential equations via a homotopy perturbation method. Math. Comput. Model. 48, 486–498 (2008)
Teodoro, M.F.: Numerical solution of a forward-backward equation from physiology (accepted for publication in Applied Mathematics and Information Sciences)
Teodoro, M.F.: Numerical approximation of a delay-advanced equation from acoustics. In: Vigo-Aguiar, J., et al. (eds.) Mathematical Methods in Science and Engineering, pp. 1086–1089. CMMSE, Spain (2015)
Teodoro, M.F.: Numerical approach of a nonlinear forward-backward equation. Int. J. Math. Comput. Methods 1, 75–78 (2016)
Teodoro, M.F.: Numerical solution of a delay-advanced equation from acoustics. Int. J. Mech. 11, 107–114 (2017)
Teodoro, M.: Approximating a nonlinear advanced-delayed equation from acoustics. In: Sergeyev, Y.D., Kvasov, D.E., Accio, F.D., Mukhametzhanov, M.S. (eds.) AIP Conference Proceedings. Numerical Computations: Theory and Algorithms. vol. 1776. AIP, Melville (2016)
Teodoro, M.: Modelling a nonlinear mtfde from acoustics. In: Simos, T., Tsitouras, C. (eds.) AIP Conference Proceedings. Num. Anal. and App. Math., vol. 1738. AIP, Melville (2016)
Teodoro, M.: An issue about the existence of solutions for a linear non-autonomous MTFDE. In: Pinelas, S., Došlá, Z., Došý, O., Kloeden, P. (eds.) Differential and Difference Equations with Applications. Proceedings in Mathematics&Statistics, vol. 164. Springer, Cham (2016)
Teodoro, M., Lima, P., Ford, N.J., Lumb, P.: Numerical approximation of a nonlinear delay-advance functional differential equations by a finite element method. In: Simos, T., Psihoyios, G., Tsitouras, C., Anastassi, Z. (eds.) AIP Conference Proceedings. Num. Anal. and App. Math., vol. 1479, pp. 406–409. AIP, Melville (2012)
Teodoro, M., Lima, P., Ford, N., Lumb, P.: Numerical modelling of a functional differential equation with deviating arguments using a collocation method. In: Simos, T., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings. Num. Anal. and App. Math., vol. 1048, pp. 553–557. AIP, Melville (2008)
Teodoro, M., Lima, P., Ford, N., Lumb, P.: New approach to the numerical solution of forward-backward equations. Front. Math. China 4, 155–168 (2009)
Tiago, C., Leitão, V.: Utilização de funções de base radial em problemas unidimensionais de análise estrutural. In: Goicolea, J.M., Soares, C.M., Pastor, M., Bugeda, G. (eds.) Métodos Numéricos em Engenieria, vol. V, SEMNI (2002). (in Portuguese)
Titze, I.: The physics of small amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83, 1536–1552 (1988)
Titze, I.: Principles of Voice Production. Prentice-Hall, Englewood Cliffs (1994)
Acknowledgements
This work was supported by Portuguese funds through the Center for Computational and Stochastic Mathematics (CEMAT), The Portuguese Foundation for Science and Technology (FCT), University of Lisbon, Portugal, project UID/Multi-/04621/2013, and Center of Naval Research (CINAV), Naval Academy, Portuguese Navy, Portugal.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Teodoro, M.F. (2017). Approximating a Retarded-Advanced Differential Equation Using Radial Basis Functions. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10408. Springer, Cham. https://doi.org/10.1007/978-3-319-62404-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-62404-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62403-7
Online ISBN: 978-3-319-62404-4
eBook Packages: Computer ScienceComputer Science (R0)