Skip to main content

Approximating a Retarded-Advanced Differential Equation Using Radial Basis Functions

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10408))

Included in the following conference series:

  • 2101 Accesses

Abstract

In last years we have got the approximation of the solution of a linear mixed type functional differential equation, considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering a polynomial basis. The present work introduces a numerical scheme using collocation and radial basis functions to solve numerically the non-linear mixed type equation with symmetric delay and advance. The results are similar using collocation, B-splines and exponential radial functions. The preliminary results are promising, but more simulations using different basis of radial functions are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abell, K., Elmer, C., Humphries, A., Vleck, E.V.: Computation of mixed type functional differential boundary value problems. SIADS - SIAM J. Appl. Dyn. Syst. 4, 755–781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvarez-Rodriguez, U., Perez-Leija, A., Egusquiza, I., Grfe, M., Sanz, M., Lamata, L., Szameit, A., Solano, E.: Advanced-retarded differential equations in quantum photonic systems. Sci. Rep. 7 (2017). Art. no. 42933

    Google Scholar 

  3. Bell, J.: Behaviour of some models of myelinated axons. IMA J. Math. Appl. Med. Biol. 1, 149–167 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bell, J., Cosner, C.: Threshold conditions for a diffusive model of a myelinated axon. J. Math. Biol. 18, 39–52 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buhmann, M.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  6. Caruntu, B., Bota, C.: Analytical approximate solutions for a general class of nonlinear delay differential equations. Sci. World J. 2014, 6 (2014). iD 631416

    Article  Google Scholar 

  7. Chi, H., Bell, J., Hassard, B.: Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction. J. Math. Biol. 24, 583–601 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ford, N., Lumb, P.: Mixed-type functional differential equations: a numerical approach. J. Comput. Appl. Math. 229(2), 471–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iakovleva, V., Vanegas, C.: On the solution of differential equations withe delayed and advanced arguments. Electron. J. Differ. Equ. Conf. 13, 57–63 (2005)

    MATH  Google Scholar 

  10. Ishizaka, K., Matsudaira, M.: Fluid Mechanical Considerations of Vocal Cord Vibration. Speech Communications Research Laboratory, monography 8 (1972)

    Google Scholar 

  11. Ishizaka, K., Matsudaira, M.: Speech Physiology and Acoustic Phonetics. MacMillan, New York (1977)

    Google Scholar 

  12. Lima, P., Teodoro, M., Ford, N., Lumb, P.: Analytical and numerical investigation of mixed type functional differential equations. J. Comput. Appl. Math. 234, 2732–2744 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lima, P., Teodoro, M., Ford, N., Lumb, P.: Finite element solution of a linear mixed-type functional differential equation. Numer. Algorithms 55, 301–320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lima, P., Teodoro, M., Ford, N., Lumb, P.: Analysis and computational approximation of a forward-backward equation arising in nerve conduction. In: Pinelas, S., Chipot, M., Dosla, Z. (eds.) Differential and Difference Equations with Applications. Springer Proceedings in Mathematics & Statistics, vol. 47, pp. 475–483. Springer, New York (2013)

    Chapter  Google Scholar 

  15. Lucero, J.: Advanced-delay equations for aerolastics oscillations in physiology. Biophys. Rev. Lett. 3, 125–133 (2008)

    Article  Google Scholar 

  16. Lucero, J.: A lumped mucosal wave model of vocal folds revisited: recent extensions and oscillation hysteresis. J. Acoust. Soc. Am. 129, 1568–1579 (2011)

    Article  Google Scholar 

  17. Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equ. 11, 49–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pontryagin, L., Boltyanskii, V., Gamkrelidze, R., Mishchenko, E.: The Mathematical Theory of Optimal Process. Interscience, New York (1962)

    Google Scholar 

  19. Rustichini, A.: Functional differential equations of mixed type: the linear autonomous case. J. Dyn. Differ. Equ. 1, 121–143 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rustichini, A.: Hopf bifurcation for functional differential equations of mixed type. J. Dyn. Differ. Equ. 1, 145–177 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shakery, F., Dehghan, M.: Solution of delay differential equations via a homotopy perturbation method. Math. Comput. Model. 48, 486–498 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Teodoro, M.F.: Numerical solution of a forward-backward equation from physiology (accepted for publication in Applied Mathematics and Information Sciences)

    Google Scholar 

  23. Teodoro, M.F.: Numerical approximation of a delay-advanced equation from acoustics. In: Vigo-Aguiar, J., et al. (eds.) Mathematical Methods in Science and Engineering, pp. 1086–1089. CMMSE, Spain (2015)

    Google Scholar 

  24. Teodoro, M.F.: Numerical approach of a nonlinear forward-backward equation. Int. J. Math. Comput. Methods 1, 75–78 (2016)

    Google Scholar 

  25. Teodoro, M.F.: Numerical solution of a delay-advanced equation from acoustics. Int. J. Mech. 11, 107–114 (2017)

    Google Scholar 

  26. Teodoro, M.: Approximating a nonlinear advanced-delayed equation from acoustics. In: Sergeyev, Y.D., Kvasov, D.E., Accio, F.D., Mukhametzhanov, M.S. (eds.) AIP Conference Proceedings. Numerical Computations: Theory and Algorithms. vol. 1776. AIP, Melville (2016)

    Google Scholar 

  27. Teodoro, M.: Modelling a nonlinear mtfde from acoustics. In: Simos, T., Tsitouras, C. (eds.) AIP Conference Proceedings. Num. Anal. and App. Math., vol. 1738. AIP, Melville (2016)

    Google Scholar 

  28. Teodoro, M.: An issue about the existence of solutions for a linear non-autonomous MTFDE. In: Pinelas, S., Došlá, Z., Došý, O., Kloeden, P. (eds.) Differential and Difference Equations with Applications. Proceedings in Mathematics&Statistics, vol. 164. Springer, Cham (2016)

    Google Scholar 

  29. Teodoro, M., Lima, P., Ford, N.J., Lumb, P.: Numerical approximation of a nonlinear delay-advance functional differential equations by a finite element method. In: Simos, T., Psihoyios, G., Tsitouras, C., Anastassi, Z. (eds.) AIP Conference Proceedings. Num. Anal. and App. Math., vol. 1479, pp. 406–409. AIP, Melville (2012)

    Google Scholar 

  30. Teodoro, M., Lima, P., Ford, N., Lumb, P.: Numerical modelling of a functional differential equation with deviating arguments using a collocation method. In: Simos, T., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings. Num. Anal. and App. Math., vol. 1048, pp. 553–557. AIP, Melville (2008)

    Google Scholar 

  31. Teodoro, M., Lima, P., Ford, N., Lumb, P.: New approach to the numerical solution of forward-backward equations. Front. Math. China 4, 155–168 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tiago, C., Leitão, V.: Utilização de funções de base radial em problemas unidimensionais de análise estrutural. In: Goicolea, J.M., Soares, C.M., Pastor, M., Bugeda, G. (eds.) Métodos Numéricos em Engenieria, vol. V, SEMNI (2002). (in Portuguese)

    Google Scholar 

  33. Titze, I.: The physics of small amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83, 1536–1552 (1988)

    Article  Google Scholar 

  34. Titze, I.: Principles of Voice Production. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Portuguese funds through the Center for Computational and Stochastic Mathematics (CEMAT), The Portuguese Foundation for Science and Technology (FCT), University of Lisbon, Portugal, project UID/Multi-/04621/2013, and Center of Naval Research (CINAV), Naval Academy, Portuguese Navy, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Filomena Teodoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Teodoro, M.F. (2017). Approximating a Retarded-Advanced Differential Equation Using Radial Basis Functions. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10408. Springer, Cham. https://doi.org/10.1007/978-3-319-62404-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62404-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62403-7

  • Online ISBN: 978-3-319-62404-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics