Skip to main content

Transport Properties of Liquid Aluminum at High Pressure from Quantum Molecular Dynamics Simulations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10409))

Included in the following conference series:

Abstract

Increasing demands to subsequent design and engineering of new high performance materials are boosting the precise knowledge of the transport properties of liquid metals. Here we report a quantum molecular dynamics study of diffusion coefficients and viscosity of liquid aluminum under high pressure. The diffusion coefficients and viscosity are calculated up to 140 GPa and 10000 K. The results deviate from the Rosenfeld scaling law, but the exponential relationships still exist between the dimensionless diffusion coefficients and viscosity with the pair correlation entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, Q., Wang, P.: Properties of liquid metals along melting lines under high pressure. Chin. Phys. Lett. 32, 086201 (2015)

    Article  Google Scholar 

  2. Alfe, D., Gillan, M.J.: First-principles calculation of transport coefficients. Phys. Rev. Lett. 81, 5161 (1998)

    Article  Google Scholar 

  3. Jakse, N., Pasturel, A.: Liquid aluminum: atomic diffusion and viscosity from ab initio molecular dynamics. Sci. Rep. 3, 3135 (2013)

    Article  Google Scholar 

  4. Kargl, F., Sondermann, E., Weis, H., Meyer, A.: Impact of convective flow on long-capillary chemical diffusion studies of liquid binary alloys. High Temp. High Press 42, 3 (2013)

    Google Scholar 

  5. Sun, M., Geng, H., Bian, X., Liu, Y.: Abnormal changes in aluminum viscosity and its relationship with the microstructure of melts. Acta Metall. Sin. 36, 1134 (2000). (in Chinese)

    Google Scholar 

  6. Shimoji, M., Itami, T.: Atomic Transport in Liquid Metals. Trans Tech Publications, Aedermannsdorf (1986)

    Google Scholar 

  7. Cherne, F.J., Baskes, M.I., Holian, B.L.: Predicted transport properties of liquid plutonium. Phys. Rev. B 67, 092104 (2003)

    Article  Google Scholar 

  8. Cao, Q., Wang, P., Huang, D., Yang, J., Wan, M., Wang, F.: Transport coefficients and entropy-scaling law in liquid iron up to Earth-core pressures. J. Chem. Phys. 140, 114505 (2014)

    Article  Google Scholar 

  9. Cao, Q., Huang, D., Yang, J., Wan, M., Wang, F.: Transport properties and the entropy-scaling law for liquid tantalum and molybdenum under high pressure. Chin. Phys. Lett. 31, 066202 (2014)

    Article  Google Scholar 

  10. Rosenfeld, Y.: A quasi-universal scaling law for atomic transport in simple fluids. J. Phys.: Condens. Matter 11, 5415 (1999)

    Google Scholar 

  11. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  12. Kresse, G., Furthmuuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  13. Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  14. Chisolm, E., Wallace, D.: Shock compression of condensed matter—2005. In: Furnish, M.D., Elert, M., Russell, T.P., White, C.T. (eds.) AIP Conference on Proceedings No. 845, AIP, New York (2006)

    Google Scholar 

  15. Korkmaz, S.D., Korkmaz, S.: Investigation of atomic transport and surface properties of liquid transition metals using scaling laws. J. Mol. Liq. 150, 81 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuaichuang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, S., Liu, H. (2017). Transport Properties of Liquid Aluminum at High Pressure from Quantum Molecular Dynamics Simulations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10409. Springer, Cham. https://doi.org/10.1007/978-3-319-62407-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62407-5_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62406-8

  • Online ISBN: 978-3-319-62407-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics