Abstract
The gravitational search algorithm (GSA) is reviewed, by presenting a tutorial analysis of its key issues. As any other metaheuristic, GSA requires the selection of some heuristic parameters. One parameter which is crucial in regulating the exploratory capabilities of this algorithm is the gravitational constant. An analysis regarding this parameter selection is presented and a heuristic rule proposed for this purpose. The GSA performance is compared both with a hybridization with particle swarm optimization (PSO) and standard PSO. Preliminary simulation results are presented considering simple continuous functions optimization examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
1. Rashedi E., Nezamabadi-pour H., and Saryazdi S.: GSA: A Gravitational Search Algorithm. Information Sciences, 179: 2232–2248, (2009).
2. Precup R.-E., David R.-C., Petriu E., Preitl S. and Rădac M.-B.: Gravitational Search Algorithms in Fuzzy Control Systems Tuning. Preprints of the 18th IFAC World Congress, pp. 13624–13629, (2011).
3. Rashedi E. and Nezamabadi-pour H.: A stochastic gravitational approach to feature based color image segmentation. Eng. Applic. of Artificial Intelligence. 26: 1322–1332, (2013).
4. Chen Z., Xiaohui Y., Tian H. and Ji B.: Improved gravitational search algorithm for parameter identification of water turbine regulation system. Energy Conversion and Management 78: 306–315, (2014).
5. Xiang J., Han X. H., Duan F., Qiang Y., Xiong X. Y., Lan Y. and Chai H.: A novel hybrid system for feature selection based on an improved gravitational search algorithm and k-NN method. Applied Soft Computing 31: 293–307, (2015).
6. Oliveira P. B. M., Pires E. S. and Novais P.: Design of Posicast PID control systems using a gravitational search algorithm. Neurocomputing 167:18–23, (2015).
7. Sarjila R., Ravi K., Edward J., Kumar K. and Prasad A.: Parameter Extraction of Solar Photovoltaic Modules Using Gravitational Search Algorithm. Journal of Electrical and Computer Engineering Volume (2016), Article ID 2143572, 6 pages http://dx.doi.org/10.1155/2016/2143572.
8. Ghavidel S., Aghaei J., Muttaqi K. and Heidari A.: Renewable energy management in a remote area using modified gravitational search algorithm. Energy 97: 391–399, (2016).
9. Mirjalili S. and Hashim S.: A New Hybrid PSOGSA Algorithm for Function Optimization. Proc. of the Int. Conf. on Computer and Information Application, pp. 374–377, (2010).
10. Mirjalili S., Hashim S. and Sardroudi S.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Applied Mathematics and Computation 218:11125–11137, (2012).
11. Jianga S., Wanga Y. and Jiaa Z.: Convergence analysis and performance of an improved gravitational search algorithm. Applied Soft Computing 24:363–384, (2014).
12. Das P., Behera H. and Panigrahi B.:A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm and Evolutionary Computation 28:14–28, (2016).
13. Sun G., Zhang A., Wang Z., Yao Y. and Ma J.: Locally informed gravitational search algorithm. Knowledge-Based Systems 104:134–144, (2016).
14. Suna G., Zhanga A., Yao Y. and Wang Z.: A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding. Applied Soft Computing 46:703–730, (2016).
15. Gauci M., Dodd T. J. and Groß R: Why ‘GSA: a gravitational search algorithm’ is not genuinely based on the law of gravity. Natural Computing, 11:719–720, (2012).
16. Darzi S., Tiong S., Islam M., Soleymanpour H. and Kibria S.: An experience oriented-convergence improved gravitational search algorithm for minimum variance distortion less response beamforming optimum. PLoSONE11,doi:10.1371/journal.pone.0156749, (2016).
17. Rashedi R.: GSA source code. https://www.mathworks.com/matlabcentral/fileexchange/27756-gravitational-search-algorithm--gsa-, Retrieved in 22-3-2017.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
de Moura Oliveira, P.B., Oliveira, J., Cunha, J.B. (2018). Trends in Gravitational Search Algorithm. In: Omatu, S., Rodríguez, S., Villarrubia, G., Faria, P., Sitek, P., Prieto, J. (eds) Distributed Computing and Artificial Intelligence, 14th International Conference. DCAI 2017. Advances in Intelligent Systems and Computing, vol 620. Springer, Cham. https://doi.org/10.1007/978-3-319-62410-5_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-62410-5_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62409-9
Online ISBN: 978-3-319-62410-5
eBook Packages: EngineeringEngineering (R0)